1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
|
/* specfunc/coulomb.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
/* Evaluation of Coulomb wave functions F_L(eta, x), G_L(eta, x),
* and their derivatives. A combination of Steed's method, asymptotic
* results, and power series.
*
* Steed's method:
* [Barnett, CPC 21, 297 (1981)]
* Power series and other methods:
* [Biedenharn et al., PR 97, 542 (1954)]
* [Bardin et al., CPC 3, 73 (1972)]
* [Abad+Sesma, CPC 71, 110 (1992)]
*/
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_psi.h>
#include <gsl/gsl_sf_airy.h>
#include <gsl/gsl_sf_pow_int.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_coulomb.h>
#include "error.h"
/* the L=0 normalization constant
* [Abramowitz+Stegun 14.1.8]
*/
static
double
C0sq(double eta)
{
double twopieta = 2.0*M_PI*eta;
if(fabs(eta) < GSL_DBL_EPSILON) {
return 1.0;
}
else if(twopieta > GSL_LOG_DBL_MAX) {
return 0.0;
}
else {
gsl_sf_result scale;
gsl_sf_expm1_e(twopieta, &scale);
return twopieta/scale.val;
}
}
/* the full definition of C_L(eta) for any valid L and eta
* [Abramowitz and Stegun 14.1.7]
* This depends on the complex gamma function. For large
* arguments the phase of the complex gamma function is not
* very accurately determined. However the modulus is, and that
* is all that we need to calculate C_L.
*
* This is not valid for L <= -3/2 or L = -1.
*/
static
int
CLeta(double L, double eta, gsl_sf_result * result)
{
gsl_sf_result ln1; /* log of numerator Gamma function */
gsl_sf_result ln2; /* log of denominator Gamma function */
double sgn = 1.0;
double arg_val, arg_err;
if(fabs(eta/(L+1.0)) < GSL_DBL_EPSILON) {
gsl_sf_lngamma_e(L+1.0, &ln1);
}
else {
gsl_sf_result p1; /* phase of numerator Gamma -- not used */
gsl_sf_lngamma_complex_e(L+1.0, eta, &ln1, &p1); /* should be ok */
}
gsl_sf_lngamma_e(2.0*(L+1.0), &ln2);
if(L < -1.0) sgn = -sgn;
arg_val = L*M_LN2 - 0.5*eta*M_PI + ln1.val - ln2.val;
arg_err = ln1.err + ln2.err;
arg_err += GSL_DBL_EPSILON * (fabs(L*M_LN2) + fabs(0.5*eta*M_PI));
return gsl_sf_exp_err_e(arg_val, arg_err, result);
}
int
gsl_sf_coulomb_CL_e(double lam, double eta, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(lam <= -1.0) {
DOMAIN_ERROR(result);
}
else if(fabs(lam) < GSL_DBL_EPSILON) {
/* saves a calculation of complex_lngamma(), otherwise not necessary */
result->val = sqrt(C0sq(eta));
result->err = 2.0 * GSL_DBL_EPSILON * result->val;
return GSL_SUCCESS;
}
else {
return CLeta(lam, eta, result);
}
}
/* cl[0] .. cl[kmax] = C_{lam_min}(eta) .. C_{lam_min+kmax}(eta)
*/
int
gsl_sf_coulomb_CL_array(double lam_min, int kmax, double eta, double * cl)
{
int k;
gsl_sf_result cl_0;
gsl_sf_coulomb_CL_e(lam_min, eta, &cl_0);
cl[0] = cl_0.val;
for(k=1; k<=kmax; k++) {
double L = lam_min + k;
cl[k] = cl[k-1] * hypot(L, eta)/(L*(2.0*L+1.0));
}
return GSL_SUCCESS;
}
/* Evaluate the series for Phi_L(eta,x) and Phi_L*(eta,x)
* [Abramowitz+Stegun 14.1.5]
* [Abramowitz+Stegun 14.1.13]
*
* The sequence of coefficients A_k^L is
* manifestly well-controlled for L >= -1/2
* and eta < 10.
*
* This makes sense since this is the region
* away from threshold, and you expect
* the evaluation to become easier as you
* get farther from threshold.
*
* Empirically, this is quite well-behaved for
* L >= -1/2
* eta < 10
* x < 10
*/
#if 0
static
int
coulomb_Phi_series(const double lam, const double eta, const double x,
double * result, double * result_star)
{
int kmin = 5;
int kmax = 200;
int k;
double Akm2 = 1.0;
double Akm1 = eta/(lam+1.0);
double Ak;
double xpow = x;
double sum = Akm2 + Akm1*x;
double sump = (lam+1.0)*Akm2 + (lam+2.0)*Akm1*x;
double prev_abs_del = fabs(Akm1*x);
double prev_abs_del_p = (lam+2.0) * prev_abs_del;
for(k=2; k<kmax; k++) {
double del;
double del_p;
double abs_del;
double abs_del_p;
Ak = (2.0*eta*Akm1 - Akm2)/(k*(2.0*lam + 1.0 + k));
xpow *= x;
del = Ak*xpow;
del_p = (k+lam+1.0)*del;
sum += del;
sump += del_p;
abs_del = fabs(del);
abs_del_p = fabs(del_p);
if( abs_del/(fabs(sum)+abs_del) < GSL_DBL_EPSILON
&& prev_abs_del/(fabs(sum)+prev_abs_del) < GSL_DBL_EPSILON
&& abs_del_p/(fabs(sump)+abs_del_p) < GSL_DBL_EPSILON
&& prev_abs_del_p/(fabs(sump)+prev_abs_del_p) < GSL_DBL_EPSILON
&& k > kmin
) break;
/* We need to keep track of the previous delta because when
* eta is near zero the odd terms of the sum are very small
* and this could lead to premature termination.
*/
prev_abs_del = abs_del;
prev_abs_del_p = abs_del_p;
Akm2 = Akm1;
Akm1 = Ak;
}
*result = sum;
*result_star = sump;
if(k==kmax) {
GSL_ERROR ("error", GSL_EMAXITER);
}
else {
return GSL_SUCCESS;
}
}
#endif /* 0 */
/* Determine the connection phase, phi_lambda.
* See coulomb_FG_series() below. We have
* to be careful about sin(phi)->0. Note that
* there is an underflow condition for large
* positive eta in any case.
*/
static
int
coulomb_connection(const double lam, const double eta,
double * cos_phi, double * sin_phi)
{
if(eta > -GSL_LOG_DBL_MIN/2.0*M_PI-1.0) {
*cos_phi = 1.0;
*sin_phi = 0.0;
GSL_ERROR ("error", GSL_EUNDRFLW);
}
else if(eta > -GSL_LOG_DBL_EPSILON/(4.0*M_PI)) {
const double eps = 2.0 * exp(-2.0*M_PI*eta);
const double tpl = tan(M_PI * lam);
const double dth = eps * tpl / (tpl*tpl + 1.0);
*cos_phi = -1.0 + 0.5 * dth*dth;
*sin_phi = -dth;
return GSL_SUCCESS;
}
else {
double X = tanh(M_PI * eta) / tan(M_PI * lam);
double phi = -atan(X) - (lam + 0.5) * M_PI;
*cos_phi = cos(phi);
*sin_phi = sin(phi);
return GSL_SUCCESS;
}
}
/* Evaluate the Frobenius series for F_lam(eta,x) and G_lam(eta,x).
* Homegrown algebra. Evaluates the series for F_{lam} and
* F_{-lam-1}, then uses
* G_{lam} = (F_{lam} cos(phi) - F_{-lam-1}) / sin(phi)
* where
* phi = Arg[Gamma[1+lam+I eta]] - Arg[Gamma[-lam + I eta]] - (lam+1/2)Pi
* = Arg[Sin[Pi(-lam+I eta)] - (lam+1/2)Pi
* = atan2(-cos(lam Pi)sinh(eta Pi), -sin(lam Pi)cosh(eta Pi)) - (lam+1/2)Pi
*
* = -atan(X) - (lam+1/2) Pi, X = tanh(eta Pi)/tan(lam Pi)
*
* Not appropriate for lam <= -1/2, lam = 0, or lam >= 1/2.
*/
static
int
coulomb_FG_series(const double lam, const double eta, const double x,
gsl_sf_result * F, gsl_sf_result * G)
{
const int max_iter = 800;
gsl_sf_result ClamA;
gsl_sf_result ClamB;
int stat_A = CLeta(lam, eta, &ClamA);
int stat_B = CLeta(-lam-1.0, eta, &ClamB);
const double tlp1 = 2.0*lam + 1.0;
const double pow_x = pow(x, lam);
double cos_phi_lam;
double sin_phi_lam;
double uA_mm2 = 1.0; /* uA sum is for F_{lam} */
double uA_mm1 = x*eta/(lam+1.0);
double uA_m;
double uB_mm2 = 1.0; /* uB sum is for F_{-lam-1} */
double uB_mm1 = -x*eta/lam;
double uB_m;
double A_sum = uA_mm2 + uA_mm1;
double B_sum = uB_mm2 + uB_mm1;
double A_abs_del_prev = fabs(A_sum);
double B_abs_del_prev = fabs(B_sum);
gsl_sf_result FA, FB;
int m = 2;
int stat_conn = coulomb_connection(lam, eta, &cos_phi_lam, &sin_phi_lam);
if(stat_conn == GSL_EUNDRFLW) {
F->val = 0.0; /* FIXME: should this be set to Inf too like G? */
F->err = 0.0;
OVERFLOW_ERROR(G);
}
while(m < max_iter) {
double abs_dA;
double abs_dB;
uA_m = x*(2.0*eta*uA_mm1 - x*uA_mm2)/(m*(m+tlp1));
uB_m = x*(2.0*eta*uB_mm1 - x*uB_mm2)/(m*(m-tlp1));
A_sum += uA_m;
B_sum += uB_m;
abs_dA = fabs(uA_m);
abs_dB = fabs(uB_m);
if(m > 15) {
/* Don't bother checking until we have gone out a little ways;
* a minor optimization. Also make sure to check both the
* current and the previous increment because the odd and even
* terms of the sum can have very different behaviour, depending
* on the value of eta.
*/
double max_abs_dA = GSL_MAX(abs_dA, A_abs_del_prev);
double max_abs_dB = GSL_MAX(abs_dB, B_abs_del_prev);
double abs_A = fabs(A_sum);
double abs_B = fabs(B_sum);
if( max_abs_dA/(max_abs_dA + abs_A) < 4.0*GSL_DBL_EPSILON
&& max_abs_dB/(max_abs_dB + abs_B) < 4.0*GSL_DBL_EPSILON
) break;
}
A_abs_del_prev = abs_dA;
B_abs_del_prev = abs_dB;
uA_mm2 = uA_mm1;
uA_mm1 = uA_m;
uB_mm2 = uB_mm1;
uB_mm1 = uB_m;
m++;
}
FA.val = A_sum * ClamA.val * pow_x * x;
FA.err = fabs(A_sum) * ClamA.err * pow_x * x + 2.0*GSL_DBL_EPSILON*fabs(FA.val);
FB.val = B_sum * ClamB.val / pow_x;
FB.err = fabs(B_sum) * ClamB.err / pow_x + 2.0*GSL_DBL_EPSILON*fabs(FB.val);
F->val = FA.val;
F->err = FA.err;
G->val = (FA.val * cos_phi_lam - FB.val)/sin_phi_lam;
G->err = (FA.err * fabs(cos_phi_lam) + FB.err)/fabs(sin_phi_lam);
if(m >= max_iter)
GSL_ERROR ("error", GSL_EMAXITER);
else
return GSL_ERROR_SELECT_2(stat_A, stat_B);
}
/* Evaluate the Frobenius series for F_0(eta,x) and G_0(eta,x).
* See [Bardin et al., CPC 3, 73 (1972), (14)-(17)];
* note the misprint in (17): nu_0=1 is correct, not nu_0=0.
*/
static
int
coulomb_FG0_series(const double eta, const double x,
gsl_sf_result * F, gsl_sf_result * G)
{
const int max_iter = 800;
const double x2 = x*x;
const double tex = 2.0*eta*x;
gsl_sf_result C0;
int stat_CL = CLeta(0.0, eta, &C0);
gsl_sf_result r1pie;
int psi_stat = gsl_sf_psi_1piy_e(eta, &r1pie);
double u_mm2 = 0.0; /* u_0 */
double u_mm1 = x; /* u_1 */
double u_m;
double v_mm2 = 1.0; /* nu_0 */
double v_mm1 = tex*(2.0*M_EULER-1.0+r1pie.val); /* nu_1 */
double v_m;
double u_sum = u_mm2 + u_mm1;
double v_sum = v_mm2 + v_mm1;
double u_abs_del_prev = fabs(u_sum);
double v_abs_del_prev = fabs(v_sum);
int m = 2;
double u_sum_err = 2.0 * GSL_DBL_EPSILON * fabs(u_sum);
double v_sum_err = 2.0 * GSL_DBL_EPSILON * fabs(v_sum);
double ln2x = log(2.0*x);
while(m < max_iter) {
double abs_du;
double abs_dv;
double m_mm1 = m*(m-1.0);
u_m = (tex*u_mm1 - x2*u_mm2)/m_mm1;
v_m = (tex*v_mm1 - x2*v_mm2 - 2.0*eta*(2*m-1)*u_m)/m_mm1;
u_sum += u_m;
v_sum += v_m;
abs_du = fabs(u_m);
abs_dv = fabs(v_m);
u_sum_err += 2.0 * GSL_DBL_EPSILON * abs_du;
v_sum_err += 2.0 * GSL_DBL_EPSILON * abs_dv;
if(m > 15) {
/* Don't bother checking until we have gone out a little ways;
* a minor optimization. Also make sure to check both the
* current and the previous increment because the odd and even
* terms of the sum can have very different behaviour, depending
* on the value of eta.
*/
double max_abs_du = GSL_MAX(abs_du, u_abs_del_prev);
double max_abs_dv = GSL_MAX(abs_dv, v_abs_del_prev);
double abs_u = fabs(u_sum);
double abs_v = fabs(v_sum);
if( max_abs_du/(max_abs_du + abs_u) < 40.0*GSL_DBL_EPSILON
&& max_abs_dv/(max_abs_dv + abs_v) < 40.0*GSL_DBL_EPSILON
) break;
}
u_abs_del_prev = abs_du;
v_abs_del_prev = abs_dv;
u_mm2 = u_mm1;
u_mm1 = u_m;
v_mm2 = v_mm1;
v_mm1 = v_m;
m++;
}
F->val = C0.val * u_sum;
F->err = C0.err * fabs(u_sum);
F->err += fabs(C0.val) * u_sum_err;
F->err += 2.0 * GSL_DBL_EPSILON * fabs(F->val);
G->val = (v_sum + 2.0*eta*u_sum * ln2x) / C0.val;
G->err = (fabs(v_sum) + fabs(2.0*eta*u_sum * ln2x)) / fabs(C0.val) * fabs(C0.err/C0.val);
G->err += (v_sum_err + fabs(2.0*eta*u_sum_err*ln2x)) / fabs(C0.val);
G->err += 2.0 * GSL_DBL_EPSILON * fabs(G->val);
if(m == max_iter)
GSL_ERROR ("error", GSL_EMAXITER);
else
return GSL_ERROR_SELECT_2(psi_stat, stat_CL);
}
/* Evaluate the Frobenius series for F_{-1/2}(eta,x) and G_{-1/2}(eta,x).
* Homegrown algebra.
*/
static
int
coulomb_FGmhalf_series(const double eta, const double x,
gsl_sf_result * F, gsl_sf_result * G)
{
const int max_iter = 800;
const double rx = sqrt(x);
const double x2 = x*x;
const double tex = 2.0*eta*x;
gsl_sf_result Cmhalf;
int stat_CL = CLeta(-0.5, eta, &Cmhalf);
double u_mm2 = 1.0; /* u_0 */
double u_mm1 = tex * u_mm2; /* u_1 */
double u_m;
double v_mm2, v_mm1, v_m;
double f_sum, g_sum;
double tmp1;
gsl_sf_result rpsi_1pe;
gsl_sf_result rpsi_1p2e;
int m = 2;
gsl_sf_psi_1piy_e(eta, &rpsi_1pe);
gsl_sf_psi_1piy_e(2.0*eta, &rpsi_1p2e);
v_mm2 = 2.0*M_EULER - M_LN2 - rpsi_1pe.val + 2.0*rpsi_1p2e.val;
v_mm1 = tex*(v_mm2 - 2.0*u_mm2);
f_sum = u_mm2 + u_mm1;
g_sum = v_mm2 + v_mm1;
while(m < max_iter) {
double m2 = m*m;
u_m = (tex*u_mm1 - x2*u_mm2)/m2;
v_m = (tex*v_mm1 - x2*v_mm2 - 2.0*m*u_m)/m2;
f_sum += u_m;
g_sum += v_m;
if( f_sum != 0.0
&& g_sum != 0.0
&& (fabs(u_m/f_sum) + fabs(v_m/g_sum) < 10.0*GSL_DBL_EPSILON)) break;
u_mm2 = u_mm1;
u_mm1 = u_m;
v_mm2 = v_mm1;
v_mm1 = v_m;
m++;
}
F->val = Cmhalf.val * rx * f_sum;
F->err = Cmhalf.err * fabs(rx * f_sum) + 2.0*GSL_DBL_EPSILON*fabs(F->val);
tmp1 = f_sum*log(x);
G->val = -rx*(tmp1 + g_sum)/Cmhalf.val;
G->err = fabs(rx)*(fabs(tmp1) + fabs(g_sum))/fabs(Cmhalf.val) * fabs(Cmhalf.err/Cmhalf.val);
if(m == max_iter)
GSL_ERROR ("error", GSL_EMAXITER);
else
return stat_CL;
}
/* Evolve the backwards recurrence for F,F'.
*
* F_{lam-1} = (S_lam F_lam + F_lam') / R_lam
* F_{lam-1}' = (S_lam F_{lam-1} - R_lam F_lam)
* where
* R_lam = sqrt(1 + (eta/lam)^2)
* S_lam = lam/x + eta/lam
*
*/
static
int
coulomb_F_recur(double lam_min, int kmax,
double eta, double x,
double F_lam_max, double Fp_lam_max,
double * F_lam_min, double * Fp_lam_min
)
{
double x_inv = 1.0/x;
double fcl = F_lam_max;
double fpl = Fp_lam_max;
double lam_max = lam_min + kmax;
double lam = lam_max;
int k;
for(k=kmax-1; k>=0; k--) {
double el = eta/lam;
double rl = hypot(1.0, el);
double sl = el + lam*x_inv;
double fc_lm1;
fc_lm1 = (fcl*sl + fpl)/rl;
fpl = fc_lm1*sl - fcl*rl;
fcl = fc_lm1;
lam -= 1.0;
}
*F_lam_min = fcl;
*Fp_lam_min = fpl;
return GSL_SUCCESS;
}
/* Evolve the forward recurrence for G,G'.
*
* G_{lam+1} = (S_lam G_lam - G_lam')/R_lam
* G_{lam+1}' = R_{lam+1} G_lam - S_lam G_{lam+1}
*
* where S_lam and R_lam are as above in the F recursion.
*/
static
int
coulomb_G_recur(const double lam_min, const int kmax,
const double eta, const double x,
const double G_lam_min, const double Gp_lam_min,
double * G_lam_max, double * Gp_lam_max
)
{
double x_inv = 1.0/x;
double gcl = G_lam_min;
double gpl = Gp_lam_min;
double lam = lam_min + 1.0;
int k;
for(k=1; k<=kmax; k++) {
double el = eta/lam;
double rl = hypot(1.0, el);
double sl = el + lam*x_inv;
double gcl1 = (sl*gcl - gpl)/rl;
gpl = rl*gcl - sl*gcl1;
gcl = gcl1;
lam += 1.0;
}
*G_lam_max = gcl;
*Gp_lam_max = gpl;
return GSL_SUCCESS;
}
/* Evaluate the first continued fraction, giving
* the ratio F'/F at the upper lambda value.
* We also determine the sign of F at that point,
* since it is the sign of the last denominator
* in the continued fraction.
*/
static
int
coulomb_CF1(double lambda,
double eta, double x,
double * fcl_sign,
double * result,
int * count
)
{
const double CF1_small = 1.e-30;
const double CF1_abort = 1.0e+05;
const double CF1_acc = 2.0*GSL_DBL_EPSILON;
const double x_inv = 1.0/x;
const double px = lambda + 1.0 + CF1_abort;
double pk = lambda + 1.0;
double F = eta/pk + pk*x_inv;
double D, C;
double df;
*fcl_sign = 1.0;
*count = 0;
if(fabs(F) < CF1_small) F = CF1_small;
D = 0.0;
C = F;
do {
double pk1 = pk + 1.0;
double ek = eta / pk;
double rk2 = 1.0 + ek*ek;
double tk = (pk + pk1)*(x_inv + ek/pk1);
D = tk - rk2 * D;
C = tk - rk2 / C;
if(fabs(C) < CF1_small) C = CF1_small;
if(fabs(D) < CF1_small) D = CF1_small;
D = 1.0/D;
df = D * C;
F = F * df;
if(D < 0.0) {
/* sign of result depends on sign of denominator */
*fcl_sign = - *fcl_sign;
}
pk = pk1;
if( pk > px ) {
*result = F;
GSL_ERROR ("error", GSL_ERUNAWAY);
}
++(*count);
}
while(fabs(df-1.0) > CF1_acc);
*result = F;
return GSL_SUCCESS;
}
#if 0
static
int
old_coulomb_CF1(const double lambda,
double eta, double x,
double * fcl_sign,
double * result
)
{
const double CF1_abort = 1.e5;
const double CF1_acc = 10.0*GSL_DBL_EPSILON;
const double x_inv = 1.0/x;
const double px = lambda + 1.0 + CF1_abort;
double pk = lambda + 1.0;
double D;
double df;
double F;
double p;
double pk1;
double ek;
double fcl = 1.0;
double tk;
while(1) {
ek = eta/pk;
F = (ek + pk*x_inv)*fcl + (fcl - 1.0)*x_inv;
pk1 = pk + 1.0;
if(fabs(eta*x + pk*pk1) > CF1_acc) break;
fcl = (1.0 + ek*ek)/(1.0 + eta*eta/(pk1*pk1));
pk = 2.0 + pk;
}
D = 1.0/((pk + pk1)*(x_inv + ek/pk1));
df = -fcl*(1.0 + ek*ek)*D;
if(fcl != 1.0) fcl = -1.0;
if(D < 0.0) fcl = -fcl;
F = F + df;
p = 1.0;
do {
pk = pk1;
pk1 = pk + 1.0;
ek = eta / pk;
tk = (pk + pk1)*(x_inv + ek/pk1);
D = tk - D*(1.0+ek*ek);
if(fabs(D) < sqrt(CF1_acc)) {
p += 1.0;
if(p > 2.0) {
printf("HELP............\n");
}
}
D = 1.0/D;
if(D < 0.0) {
/* sign of result depends on sign of denominator */
fcl = -fcl;
}
df = df*(D*tk - 1.0);
F = F + df;
if( pk > px ) {
GSL_ERROR ("error", GSL_ERUNAWAY);
}
}
while(fabs(df) > fabs(F)*CF1_acc);
*fcl_sign = fcl;
*result = F;
return GSL_SUCCESS;
}
#endif /* 0 */
/* Evaluate the second continued fraction to
* obtain the ratio
* (G' + i F')/(G + i F) := P + i Q
* at the specified lambda value.
*/
static
int
coulomb_CF2(const double lambda, const double eta, const double x,
double * result_P, double * result_Q, int * count
)
{
int status = GSL_SUCCESS;
const double CF2_acc = 4.0*GSL_DBL_EPSILON;
const double CF2_abort = 2.0e+05;
const double wi = 2.0*eta;
const double x_inv = 1.0/x;
const double e2mm1 = eta*eta + lambda*(lambda + 1.0);
double ar = -e2mm1;
double ai = eta;
double br = 2.0*(x - eta);
double bi = 2.0;
double dr = br/(br*br + bi*bi);
double di = -bi/(br*br + bi*bi);
double dp = -x_inv*(ar*di + ai*dr);
double dq = x_inv*(ar*dr - ai*di);
double A, B, C, D;
double pk = 0.0;
double P = 0.0;
double Q = 1.0 - eta*x_inv;
*count = 0;
do {
P += dp;
Q += dq;
pk += 2.0;
ar += pk;
ai += wi;
bi += 2.0;
D = ar*dr - ai*di + br;
di = ai*dr + ar*di + bi;
C = 1.0/(D*D + di*di);
dr = C*D;
di = -C*di;
A = br*dr - bi*di - 1.;
B = bi*dr + br*di;
C = dp*A - dq*B;
dq = dp*B + dq*A;
dp = C;
if(pk > CF2_abort) {
status = GSL_ERUNAWAY;
break;
}
++(*count);
}
while(fabs(dp)+fabs(dq) > (fabs(P)+fabs(Q))*CF2_acc);
if(Q < CF2_abort*GSL_DBL_EPSILON*fabs(P)) {
status = GSL_ELOSS;
}
*result_P = P;
*result_Q = Q;
return status;
}
/* WKB evaluation of F, G. Assumes 0 < x < turning point.
* Overflows are trapped, GSL_EOVRFLW is signalled,
* and an exponent is returned such that:
*
* result_F = fjwkb * exp(-exponent)
* result_G = gjwkb * exp( exponent)
*
* See [Biedenharn et al. Phys. Rev. 97, 542-554 (1955), Section IV]
*
* Unfortunately, this is not very accurate in general. The
* test cases typically have 3-4 digits of precision. One could
* argue that this is ok for general use because, for instance,
* F is exponentially small in this region and so the absolute
* accuracy is still roughly acceptable. But it would be better
* to have a systematic method for improving the precision. See
* the Abad+Sesma method discussion below.
*/
static
int
coulomb_jwkb(const double lam, const double eta, const double x,
gsl_sf_result * fjwkb, gsl_sf_result * gjwkb,
double * exponent)
{
const double llp1 = lam*(lam+1.0) + 6.0/35.0;
const double llp1_eff = GSL_MAX(llp1, 0.0);
const double rho_ghalf = sqrt(x*(2.0*eta - x) + llp1_eff);
const double sinh_arg = sqrt(llp1_eff/(eta*eta+llp1_eff)) * rho_ghalf / x;
const double sinh_inv = log(sinh_arg + hypot(1.0,sinh_arg));
const double phi = fabs(rho_ghalf - eta*atan2(rho_ghalf,x-eta) - sqrt(llp1_eff) * sinh_inv);
const double zeta_half = pow(3.0*phi/2.0, 1.0/3.0);
const double prefactor = sqrt(M_PI*phi*x/(6.0 * rho_ghalf));
double F = prefactor * 3.0/zeta_half;
double G = prefactor * 3.0/zeta_half; /* Note the sqrt(3) from Bi normalization */
double F_exp;
double G_exp;
const double airy_scale_exp = phi;
gsl_sf_result ai;
gsl_sf_result bi;
gsl_sf_airy_Ai_scaled_e(zeta_half*zeta_half, GSL_MODE_DEFAULT, &ai);
gsl_sf_airy_Bi_scaled_e(zeta_half*zeta_half, GSL_MODE_DEFAULT, &bi);
F *= ai.val;
G *= bi.val;
F_exp = log(F) - airy_scale_exp;
G_exp = log(G) + airy_scale_exp;
if(G_exp >= GSL_LOG_DBL_MAX) {
fjwkb->val = F;
gjwkb->val = G;
fjwkb->err = 1.0e-3 * fabs(F); /* FIXME: real error here ... could be smaller */
gjwkb->err = 1.0e-3 * fabs(G);
*exponent = airy_scale_exp;
GSL_ERROR ("error", GSL_EOVRFLW);
}
else {
fjwkb->val = exp(F_exp);
gjwkb->val = exp(G_exp);
fjwkb->err = 1.0e-3 * fabs(fjwkb->val);
gjwkb->err = 1.0e-3 * fabs(gjwkb->val);
*exponent = 0.0;
return GSL_SUCCESS;
}
}
/* Asymptotic evaluation of F and G below the minimal turning point.
*
* This is meant to be a drop-in replacement for coulomb_jwkb().
* It uses the expressions in [Abad+Sesma]. This requires some
* work because I am not sure where it is valid. They mumble
* something about |x| < |lam|^(-1/2) or 8|eta x| > lam when |x| < 1.
* This seems true, but I thought the result was based on a uniform
* expansion and could be controlled by simply using more terms.
*/
#if 0
static
int
coulomb_AS_xlt2eta(const double lam, const double eta, const double x,
gsl_sf_result * f_AS, gsl_sf_result * g_AS,
double * exponent)
{
/* no time to do this now... */
}
#endif /* 0 */
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int
gsl_sf_coulomb_wave_FG_e(const double eta, const double x,
const double lam_F,
const int k_lam_G, /* lam_G = lam_F - k_lam_G */
gsl_sf_result * F, gsl_sf_result * Fp,
gsl_sf_result * G, gsl_sf_result * Gp,
double * exp_F, double * exp_G)
{
const double lam_G = lam_F - k_lam_G;
if(x < 0.0 || lam_F <= -0.5 || lam_G <= -0.5) {
GSL_SF_RESULT_SET(F, 0.0, 0.0);
GSL_SF_RESULT_SET(Fp, 0.0, 0.0);
GSL_SF_RESULT_SET(G, 0.0, 0.0);
GSL_SF_RESULT_SET(Gp, 0.0, 0.0);
*exp_F = 0.0;
*exp_G = 0.0;
GSL_ERROR ("domain error", GSL_EDOM);
}
else if(x == 0.0) {
gsl_sf_result C0;
CLeta(0.0, eta, &C0);
GSL_SF_RESULT_SET(F, 0.0, 0.0);
GSL_SF_RESULT_SET(Fp, 0.0, 0.0);
GSL_SF_RESULT_SET(G, 0.0, 0.0); /* FIXME: should be Inf */
GSL_SF_RESULT_SET(Gp, 0.0, 0.0); /* FIXME: should be Inf */
*exp_F = 0.0;
*exp_G = 0.0;
if(lam_F == 0.0){
GSL_SF_RESULT_SET(Fp, C0.val, C0.err);
}
if(lam_G == 0.0) {
GSL_SF_RESULT_SET(Gp, 1.0/C0.val, fabs(C0.err/C0.val)/fabs(C0.val));
}
GSL_ERROR ("domain error", GSL_EDOM);
/* After all, since we are asking for G, this is a domain error... */
}
else if(x < 1.2 && 2.0*M_PI*eta < 0.9*(-GSL_LOG_DBL_MIN) && fabs(eta*x) < 10.0) {
/* Reduce to a small lambda value and use the series
* representations for F and G. We cannot allow eta to
* be large and positive because the connection formula
* for G_lam is badly behaved due to an underflow in sin(phi_lam)
* [see coulomb_FG_series() and coulomb_connection() above].
* Note that large negative eta is ok however.
*/
const double SMALL = GSL_SQRT_DBL_EPSILON;
const int N = (int)(lam_F + 0.5);
const int span = GSL_MAX(k_lam_G, N);
const double lam_min = lam_F - N; /* -1/2 <= lam_min < 1/2 */
double F_lam_F, Fp_lam_F;
double G_lam_G, Gp_lam_G;
double F_lam_F_err, Fp_lam_F_err;
double Fp_over_F_lam_F;
double F_sign_lam_F;
double F_lam_min_unnorm, Fp_lam_min_unnorm;
double Fp_over_F_lam_min;
gsl_sf_result F_lam_min;
gsl_sf_result G_lam_min, Gp_lam_min;
double F_scale;
double Gerr_frac;
double F_scale_frac_err;
double F_unnorm_frac_err;
/* Determine F'/F at lam_F. */
int CF1_count;
int stat_CF1 = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count);
int stat_ser;
int stat_Fr;
int stat_Gr;
/* Recurse down with unnormalized F,F' values. */
F_lam_F = SMALL;
Fp_lam_F = Fp_over_F_lam_F * F_lam_F;
if(span != 0) {
stat_Fr = coulomb_F_recur(lam_min, span, eta, x,
F_lam_F, Fp_lam_F,
&F_lam_min_unnorm, &Fp_lam_min_unnorm
);
}
else {
F_lam_min_unnorm = F_lam_F;
Fp_lam_min_unnorm = Fp_lam_F;
stat_Fr = GSL_SUCCESS;
}
/* Determine F and G at lam_min. */
if(lam_min == -0.5) {
stat_ser = coulomb_FGmhalf_series(eta, x, &F_lam_min, &G_lam_min);
}
else if(lam_min == 0.0) {
stat_ser = coulomb_FG0_series(eta, x, &F_lam_min, &G_lam_min);
}
else if(lam_min == 0.5) {
/* This cannot happen. */
F->val = F_lam_F;
F->err = 2.0 * GSL_DBL_EPSILON * fabs(F->val);
Fp->val = Fp_lam_F;
Fp->err = 2.0 * GSL_DBL_EPSILON * fabs(Fp->val);
G->val = G_lam_G;
G->err = 2.0 * GSL_DBL_EPSILON * fabs(G->val);
Gp->val = Gp_lam_G;
Gp->err = 2.0 * GSL_DBL_EPSILON * fabs(Gp->val);
*exp_F = 0.0;
*exp_G = 0.0;
GSL_ERROR ("error", GSL_ESANITY);
}
else {
stat_ser = coulomb_FG_series(lam_min, eta, x, &F_lam_min, &G_lam_min);
}
/* Determine remaining quantities. */
Fp_over_F_lam_min = Fp_lam_min_unnorm / F_lam_min_unnorm;
Gp_lam_min.val = Fp_over_F_lam_min*G_lam_min.val - 1.0/F_lam_min.val;
Gp_lam_min.err = fabs(Fp_over_F_lam_min)*G_lam_min.err;
Gp_lam_min.err += fabs(1.0/F_lam_min.val) * fabs(F_lam_min.err/F_lam_min.val);
F_scale = F_lam_min.val / F_lam_min_unnorm;
/* Apply scale to the original F,F' values. */
F_scale_frac_err = fabs(F_lam_min.err/F_lam_min.val);
F_unnorm_frac_err = 2.0*GSL_DBL_EPSILON*(CF1_count+span+1);
F_lam_F *= F_scale;
F_lam_F_err = fabs(F_lam_F) * (F_unnorm_frac_err + F_scale_frac_err);
Fp_lam_F *= F_scale;
Fp_lam_F_err = fabs(Fp_lam_F) * (F_unnorm_frac_err + F_scale_frac_err);
/* Recurse up to get the required G,G' values. */
stat_Gr = coulomb_G_recur(lam_min, GSL_MAX(N-k_lam_G,0), eta, x,
G_lam_min.val, Gp_lam_min.val,
&G_lam_G, &Gp_lam_G
);
F->val = F_lam_F;
F->err = F_lam_F_err;
F->err += 2.0 * GSL_DBL_EPSILON * fabs(F_lam_F);
Fp->val = Fp_lam_F;
Fp->err = Fp_lam_F_err;
Fp->err += 2.0 * GSL_DBL_EPSILON * fabs(Fp_lam_F);
Gerr_frac = fabs(G_lam_min.err/G_lam_min.val) + fabs(Gp_lam_min.err/Gp_lam_min.val);
G->val = G_lam_G;
G->err = Gerr_frac * fabs(G_lam_G);
G->err += 2.0 * (CF1_count+1) * GSL_DBL_EPSILON * fabs(G->val);
Gp->val = Gp_lam_G;
Gp->err = Gerr_frac * fabs(Gp->val);
Gp->err += 2.0 * (CF1_count+1) * GSL_DBL_EPSILON * fabs(Gp->val);
*exp_F = 0.0;
*exp_G = 0.0;
return GSL_ERROR_SELECT_4(stat_ser, stat_CF1, stat_Fr, stat_Gr);
}
else if(x < 2.0*eta) {
/* Use WKB approximation to obtain F and G at the two
* lambda values, and use the Wronskian and the
* continued fractions for F'/F to obtain F' and G'.
*/
gsl_sf_result F_lam_F, G_lam_F;
gsl_sf_result F_lam_G, G_lam_G;
double exp_lam_F, exp_lam_G;
int stat_lam_F;
int stat_lam_G;
int stat_CF1_lam_F;
int stat_CF1_lam_G;
int CF1_count;
double Fp_over_F_lam_F;
double Fp_over_F_lam_G;
double F_sign_lam_F;
double F_sign_lam_G;
stat_lam_F = coulomb_jwkb(lam_F, eta, x, &F_lam_F, &G_lam_F, &exp_lam_F);
if(k_lam_G == 0) {
stat_lam_G = stat_lam_F;
F_lam_G = F_lam_F;
G_lam_G = G_lam_F;
exp_lam_G = exp_lam_F;
}
else {
stat_lam_G = coulomb_jwkb(lam_G, eta, x, &F_lam_G, &G_lam_G, &exp_lam_G);
}
stat_CF1_lam_F = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count);
if(k_lam_G == 0) {
stat_CF1_lam_G = stat_CF1_lam_F;
F_sign_lam_G = F_sign_lam_F;
Fp_over_F_lam_G = Fp_over_F_lam_F;
}
else {
stat_CF1_lam_G = coulomb_CF1(lam_G, eta, x, &F_sign_lam_G, &Fp_over_F_lam_G, &CF1_count);
}
F->val = F_lam_F.val;
F->err = F_lam_F.err;
G->val = G_lam_G.val;
G->err = G_lam_G.err;
Fp->val = Fp_over_F_lam_F * F_lam_F.val;
Fp->err = fabs(Fp_over_F_lam_F) * F_lam_F.err;
Fp->err += 2.0*GSL_DBL_EPSILON*fabs(Fp->val);
Gp->val = Fp_over_F_lam_G * G_lam_G.val - 1.0/F_lam_G.val;
Gp->err = fabs(Fp_over_F_lam_G) * G_lam_G.err;
Gp->err += fabs(1.0/F_lam_G.val) * fabs(F_lam_G.err/F_lam_G.val);
*exp_F = exp_lam_F;
*exp_G = exp_lam_G;
if(stat_lam_F == GSL_EOVRFLW || stat_lam_G == GSL_EOVRFLW) {
GSL_ERROR ("overflow", GSL_EOVRFLW);
}
else {
return GSL_ERROR_SELECT_2(stat_lam_F, stat_lam_G);
}
}
else {
/* x > 2 eta, so we know that we can find a lambda value such
* that x is above the turning point. We do this, evaluate
* using Steed's method at that oscillatory point, then
* use recursion on F and G to obtain the required values.
*
* lam_0 = a value of lambda such that x is below the turning point
* lam_min = minimum of lam_0 and the requested lam_G, since
* we must go at least as low as lam_G
*/
const double SMALL = GSL_SQRT_DBL_EPSILON;
const double C = sqrt(1.0 + 4.0*x*(x-2.0*eta));
const int N = ceil(lam_F - C + 0.5);
const double lam_0 = lam_F - GSL_MAX(N, 0);
const double lam_min = GSL_MIN(lam_0, lam_G);
double F_lam_F, Fp_lam_F;
double G_lam_G, Gp_lam_G;
double F_lam_min_unnorm, Fp_lam_min_unnorm;
double F_lam_min, Fp_lam_min;
double G_lam_min, Gp_lam_min;
double Fp_over_F_lam_F;
double Fp_over_F_lam_min;
double F_sign_lam_F, F_sign_lam_min;
double P_lam_min, Q_lam_min;
double alpha;
double gamma;
double F_scale;
int CF1_count;
int CF2_count;
int stat_CF1 = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count);
int stat_CF2;
int stat_Fr;
int stat_Gr;
int F_recur_count;
int G_recur_count;
double err_amplify;
F_lam_F = F_sign_lam_F * SMALL; /* unnormalized */
Fp_lam_F = Fp_over_F_lam_F * F_lam_F;
/* Backward recurrence to get F,Fp at lam_min */
F_recur_count = GSL_MAX(k_lam_G, N);
stat_Fr = coulomb_F_recur(lam_min, F_recur_count, eta, x,
F_lam_F, Fp_lam_F,
&F_lam_min_unnorm, &Fp_lam_min_unnorm
);
Fp_over_F_lam_min = Fp_lam_min_unnorm / F_lam_min_unnorm;
/* Steed evaluation to complete evaluation of F,Fp,G,Gp at lam_min */
stat_CF2 = coulomb_CF2(lam_min, eta, x, &P_lam_min, &Q_lam_min, &CF2_count);
alpha = Fp_over_F_lam_min - P_lam_min;
gamma = alpha/Q_lam_min;
F_sign_lam_min = GSL_SIGN(F_lam_min_unnorm) ;
F_lam_min = F_sign_lam_min / sqrt(alpha*alpha/Q_lam_min + Q_lam_min);
Fp_lam_min = Fp_over_F_lam_min * F_lam_min;
G_lam_min = gamma * F_lam_min;
Gp_lam_min = (P_lam_min * gamma - Q_lam_min) * F_lam_min;
/* Apply scale to values of F,Fp at lam_F (the top). */
F_scale = F_lam_min / F_lam_min_unnorm;
F_lam_F *= F_scale;
Fp_lam_F *= F_scale;
/* Forward recurrence to get G,Gp at lam_G (the top). */
G_recur_count = GSL_MAX(N-k_lam_G,0);
stat_Gr = coulomb_G_recur(lam_min, G_recur_count, eta, x,
G_lam_min, Gp_lam_min,
&G_lam_G, &Gp_lam_G
);
err_amplify = CF1_count + CF2_count + F_recur_count + G_recur_count + 1;
F->val = F_lam_F;
F->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(F->val);
Fp->val = Fp_lam_F;
Fp->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(Fp->val);
G->val = G_lam_G;
G->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(G->val);
Gp->val = Gp_lam_G;
Gp->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(Gp->val);
*exp_F = 0.0;
*exp_G = 0.0;
return GSL_ERROR_SELECT_4(stat_CF1, stat_CF2, stat_Fr, stat_Gr);
}
}
int
gsl_sf_coulomb_wave_F_array(double lam_min, int kmax,
double eta, double x,
double * fc_array,
double * F_exp)
{
if(x == 0.0) {
int k;
*F_exp = 0.0;
for(k=0; k<=kmax; k++) {
fc_array[k] = 0.0;
}
if(lam_min == 0.0){
gsl_sf_result f_0;
CLeta(0.0, eta, &f_0);
fc_array[0] = f_0.val;
}
return GSL_SUCCESS;
}
else {
const double x_inv = 1.0/x;
const double lam_max = lam_min + kmax;
gsl_sf_result F, Fp;
gsl_sf_result G, Gp;
double G_exp;
int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, 0,
&F, &Fp, &G, &Gp, F_exp, &G_exp);
double fcl = F.val;
double fpl = Fp.val;
double lam = lam_max;
int k;
fc_array[kmax] = F.val;
for(k=kmax-1; k>=0; k--) {
double el = eta/lam;
double rl = hypot(1.0, el);
double sl = el + lam*x_inv;
double fc_lm1 = (fcl*sl + fpl)/rl;
fc_array[k] = fc_lm1;
fpl = fc_lm1*sl - fcl*rl;
fcl = fc_lm1;
lam -= 1.0;
}
return stat_FG;
}
}
int
gsl_sf_coulomb_wave_FG_array(double lam_min, int kmax,
double eta, double x,
double * fc_array, double * gc_array,
double * F_exp, double * G_exp)
{
const double x_inv = 1.0/x;
const double lam_max = lam_min + kmax;
gsl_sf_result F, Fp;
gsl_sf_result G, Gp;
int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, kmax,
&F, &Fp, &G, &Gp, F_exp, G_exp);
double fcl = F.val;
double fpl = Fp.val;
double lam = lam_max;
int k;
double gcl, gpl;
fc_array[kmax] = F.val;
for(k=kmax-1; k>=0; k--) {
double el = eta/lam;
double rl = hypot(1.0, el);
double sl = el + lam*x_inv;
double fc_lm1;
fc_lm1 = (fcl*sl + fpl)/rl;
fc_array[k] = fc_lm1;
fpl = fc_lm1*sl - fcl*rl;
fcl = fc_lm1;
lam -= 1.0;
}
gcl = G.val;
gpl = Gp.val;
lam = lam_min + 1.0;
gc_array[0] = G.val;
for(k=1; k<=kmax; k++) {
double el = eta/lam;
double rl = hypot(1.0, el);
double sl = el + lam*x_inv;
double gcl1 = (sl*gcl - gpl)/rl;
gc_array[k] = gcl1;
gpl = rl*gcl - sl*gcl1;
gcl = gcl1;
lam += 1.0;
}
return stat_FG;
}
int
gsl_sf_coulomb_wave_FGp_array(double lam_min, int kmax,
double eta, double x,
double * fc_array, double * fcp_array,
double * gc_array, double * gcp_array,
double * F_exp, double * G_exp)
{
const double x_inv = 1.0/x;
const double lam_max = lam_min + kmax;
gsl_sf_result F, Fp;
gsl_sf_result G, Gp;
int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, kmax,
&F, &Fp, &G, &Gp, F_exp, G_exp);
double fcl = F.val;
double fpl = Fp.val;
double lam = lam_max;
int k;
double gcl, gpl;
fc_array[kmax] = F.val;
fcp_array[kmax] = Fp.val;
for(k=kmax-1; k>=0; k--) {
double el = eta/lam;
double rl = hypot(1.0, el);
double sl = el + lam*x_inv;
double fc_lm1;
fc_lm1 = (fcl*sl + fpl)/rl;
fc_array[k] = fc_lm1;
fpl = fc_lm1*sl - fcl*rl;
fcp_array[k] = fpl;
fcl = fc_lm1;
lam -= 1.0;
}
gcl = G.val;
gpl = Gp.val;
lam = lam_min + 1.0;
gc_array[0] = G.val;
gcp_array[0] = Gp.val;
for(k=1; k<=kmax; k++) {
double el = eta/lam;
double rl = hypot(1.0, el);
double sl = el + lam*x_inv;
double gcl1 = (sl*gcl - gpl)/rl;
gc_array[k] = gcl1;
gpl = rl*gcl - sl*gcl1;
gcp_array[k] = gpl;
gcl = gcl1;
lam += 1.0;
}
return stat_FG;
}
int
gsl_sf_coulomb_wave_sphF_array(double lam_min, int kmax,
double eta, double x,
double * fc_array,
double * F_exp)
{
if(x < 0.0 || lam_min < -0.5) {
GSL_ERROR ("domain error", GSL_EDOM);
}
else if(x < 10.0/GSL_DBL_MAX) {
int k;
for(k=0; k<=kmax; k++) {
fc_array[k] = 0.0;
}
if(lam_min == 0.0) {
fc_array[0] = sqrt(C0sq(eta));
}
*F_exp = 0.0;
if(x == 0.0)
return GSL_SUCCESS;
else
GSL_ERROR ("underflow", GSL_EUNDRFLW);
}
else {
int k;
int stat_F = gsl_sf_coulomb_wave_F_array(lam_min, kmax,
eta, x,
fc_array,
F_exp);
for(k=0; k<=kmax; k++) {
fc_array[k] = fc_array[k] / x;
}
return stat_F;
}
}
|