1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
/* specfunc/coupling.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <stdlib.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_coupling.h>
#include <gsl/gsl_sf_exp.h>
#include "error.h"
inline
static
int locMax3(const int a, const int b, const int c)
{
int d = GSL_MAX(a, b);
return GSL_MAX(d, c);
}
inline
static
int locMin3(const int a, const int b, const int c)
{
int d = GSL_MIN(a, b);
return GSL_MIN(d, c);
}
inline
static
int locMin5(const int a, const int b, const int c, const int d, const int e)
{
int f = GSL_MIN(a, b);
int g = GSL_MIN(c, d);
int h = GSL_MIN(f, g);
return GSL_MIN(e, h);
}
/* See: [Thompson, Atlas for Computing Mathematical Functions] */
static
int
delta(int ta, int tb, int tc, gsl_sf_result * d)
{
gsl_sf_result f1, f2, f3, f4;
int status = 0;
status += gsl_sf_fact_e((ta + tb - tc)/2, &f1);
status += gsl_sf_fact_e((ta + tc - tb)/2, &f2);
status += gsl_sf_fact_e((tb + tc - ta)/2, &f3);
status += gsl_sf_fact_e((ta + tb + tc)/2 + 1, &f4);
if(status != 0) {
OVERFLOW_ERROR(d);
}
d->val = f1.val * f2.val * f3.val / f4.val;
d->err = 4.0 * GSL_DBL_EPSILON * fabs(d->val);
return GSL_SUCCESS;
}
static
int
triangle_selection_fails(int two_ja, int two_jb, int two_jc)
{
/*
* enough to check the triangle condition for one spin vs. the other two
*/
return ( (two_jb < abs(two_ja - two_jc)) || (two_jb > two_ja + two_jc) ||
GSL_IS_ODD(two_ja + two_jb + two_jc) );
}
static
int
m_selection_fails(int two_ja, int two_jb, int two_jc,
int two_ma, int two_mb, int two_mc)
{
return (
abs(two_ma) > two_ja
|| abs(two_mb) > two_jb
|| abs(two_mc) > two_jc
|| GSL_IS_ODD(two_ja + two_ma)
|| GSL_IS_ODD(two_jb + two_mb)
|| GSL_IS_ODD(two_jc + two_mc)
|| (two_ma + two_mb + two_mc) != 0
);
}
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int
gsl_sf_coupling_3j_e (int two_ja, int two_jb, int two_jc,
int two_ma, int two_mb, int two_mc,
gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(two_ja < 0 || two_jb < 0 || two_jc < 0) {
DOMAIN_ERROR(result);
}
else if ( triangle_selection_fails(two_ja, two_jb, two_jc)
|| m_selection_fails(two_ja, two_jb, two_jc, two_ma, two_mb, two_mc)
) {
result->val = 0.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else if ( two_ma == 0 && two_mb == 0 && two_mc == 0
&& ((two_ja + two_jb + two_jc) % 4 == 2) ) {
/* Special case for (ja jb jc; 0 0 0) = 0 when ja+jb+jc=odd */
result->val = 0.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else {
int jca = (-two_ja + two_jb + two_jc) / 2,
jcb = ( two_ja - two_jb + two_jc) / 2,
jcc = ( two_ja + two_jb - two_jc) / 2,
jmma = ( two_ja - two_ma) / 2,
jmmb = ( two_jb - two_mb) / 2,
jmmc = ( two_jc - two_mc) / 2,
jpma = ( two_ja + two_ma) / 2,
jpmb = ( two_jb + two_mb) / 2,
jpmc = ( two_jc + two_mc) / 2,
jsum = ( two_ja + two_jb + two_jc) / 2,
kmin = locMax3 (0, jpmb - jmmc, jmma - jpmc),
kmax = locMin3 (jcc, jmma, jpmb),
k, sign = GSL_IS_ODD (kmin - jpma + jmmb) ? -1 : 1,
status = 0;
double sum_pos = 0.0, sum_neg = 0.0, sum_err = 0.0;
gsl_sf_result bc1, bc2, bc3, bcn1, bcn2, bcd1, bcd2, bcd3, bcd4, term, lnorm;
status += gsl_sf_lnchoose_e (two_ja, jcc , &bcn1);
status += gsl_sf_lnchoose_e (two_jb, jcc , &bcn2);
status += gsl_sf_lnchoose_e (jsum+1, jcc , &bcd1);
status += gsl_sf_lnchoose_e (two_ja, jmma, &bcd2);
status += gsl_sf_lnchoose_e (two_jb, jmmb, &bcd3);
status += gsl_sf_lnchoose_e (two_jc, jpmc, &bcd4);
lnorm.val = 0.5 * (bcn1.val + bcn2.val - bcd1.val - bcd2.val - bcd3.val
- bcd4.val - log(two_jc + 1.0));
lnorm.err = 0.5 * (bcn1.err + bcn2.err + bcd1.err + bcd2.err + bcd3.err
+ bcd4.err + GSL_DBL_EPSILON * log(two_jc + 1.0));
for (k = kmin; k <= kmax; k++) {
status += gsl_sf_lnchoose_e (jcc, k, &bc1);
status += gsl_sf_lnchoose_e (jcb, jmma - k, &bc2);
status += gsl_sf_lnchoose_e (jca, jpmb - k, &bc3);
status += gsl_sf_exp_err_e(bc1.val + bc2.val + bc3.val + lnorm.val,
bc1.err + bc2.err + bc3.err + lnorm.err,
&term);
if (status != 0) {
OVERFLOW_ERROR (result);
}
if (sign < 0) {
sum_neg += term.val;
} else {
sum_pos += term.val;
}
sum_err += term.err;
sign = -sign;
}
result->val = sum_pos - sum_neg;
result->err = sum_err;
result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg);
result->err += 2.0 * GSL_DBL_EPSILON * (kmax - kmin) * fabs(result->val);
return GSL_SUCCESS;
}
}
int
gsl_sf_coupling_6j_INCORRECT_e(int two_ja, int two_jb, int two_jc,
int two_jd, int two_je, int two_jf,
gsl_sf_result * result)
{
return gsl_sf_coupling_6j_e(two_ja, two_jb, two_je, two_jd, two_jc, two_jf, result);
}
int
gsl_sf_coupling_6j_e(int two_ja, int two_jb, int two_jc,
int two_jd, int two_je, int two_jf,
gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if( two_ja < 0 || two_jb < 0 || two_jc < 0
|| two_jd < 0 || two_je < 0 || two_jf < 0
) {
DOMAIN_ERROR(result);
}
else if( triangle_selection_fails(two_ja, two_jb, two_jc)
|| triangle_selection_fails(two_ja, two_je, two_jf)
|| triangle_selection_fails(two_jb, two_jd, two_jf)
|| triangle_selection_fails(two_je, two_jd, two_jc)
) {
result->val = 0.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else {
gsl_sf_result n1;
gsl_sf_result d1, d2, d3, d4, d5, d6;
double norm;
int tk, tkmin, tkmax;
double phase;
double sum_pos = 0.0;
double sum_neg = 0.0;
double sumsq_err = 0.0;
int status = 0;
status += delta(two_ja, two_jb, two_jc, &d1);
status += delta(two_ja, two_je, two_jf, &d2);
status += delta(two_jb, two_jd, two_jf, &d3);
status += delta(two_je, two_jd, two_jc, &d4);
if(status != GSL_SUCCESS) {
OVERFLOW_ERROR(result);
}
norm = sqrt(d1.val) * sqrt(d2.val) * sqrt(d3.val) * sqrt(d4.val);
tkmin = locMax3(0,
two_ja + two_jd - two_jc - two_jf,
two_jb + two_je - two_jc - two_jf);
tkmax = locMin5(two_ja + two_jb + two_je + two_jd + 2,
two_ja + two_jb - two_jc,
two_je + two_jd - two_jc,
two_ja + two_je - two_jf,
two_jb + two_jd - two_jf);
phase = GSL_IS_ODD((two_ja + two_jb + two_je + two_jd + tkmin)/2)
? -1.0
: 1.0;
for(tk=tkmin; tk<=tkmax; tk += 2) {
double term;
double term_err;
gsl_sf_result den_1, den_2;
gsl_sf_result d1_a, d1_b;
status = 0;
status += gsl_sf_fact_e((two_ja + two_jb + two_je + two_jd - tk)/2 + 1, &n1);
status += gsl_sf_fact_e(tk/2, &d1_a);
status += gsl_sf_fact_e((two_jc + two_jf - two_ja - two_jd + tk)/2, &d1_b);
status += gsl_sf_fact_e((two_jc + two_jf - two_jb - two_je + tk)/2, &d2);
status += gsl_sf_fact_e((two_ja + two_jb - two_jc - tk)/2, &d3);
status += gsl_sf_fact_e((two_je + two_jd - two_jc - tk)/2, &d4);
status += gsl_sf_fact_e((two_ja + two_je - two_jf - tk)/2, &d5);
status += gsl_sf_fact_e((two_jb + two_jd - two_jf - tk)/2, &d6);
if(status != GSL_SUCCESS) {
OVERFLOW_ERROR(result);
}
d1.val = d1_a.val * d1_b.val;
d1.err = d1_a.err * fabs(d1_b.val) + fabs(d1_a.val) * d1_b.err;
den_1.val = d1.val*d2.val*d3.val;
den_1.err = d1.err * fabs(d2.val*d3.val);
den_1.err += d2.err * fabs(d1.val*d3.val);
den_1.err += d3.err * fabs(d1.val*d2.val);
den_2.val = d4.val*d5.val*d6.val;
den_2.err = d4.err * fabs(d5.val*d6.val);
den_2.err += d5.err * fabs(d4.val*d6.val);
den_2.err += d6.err * fabs(d4.val*d5.val);
term = phase * n1.val / den_1.val / den_2.val;
phase = -phase;
term_err = n1.err / fabs(den_1.val) / fabs(den_2.val);
term_err += fabs(term / den_1.val) * den_1.err;
term_err += fabs(term / den_2.val) * den_2.err;
if(term >= 0.0) {
sum_pos += norm*term;
}
else {
sum_neg -= norm*term;
}
sumsq_err += norm*norm * term_err*term_err;
}
result->val = sum_pos - sum_neg;
result->err = 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg);
result->err += sqrt(sumsq_err / (0.5*(tkmax-tkmin)+1.0));
result->err += 2.0 * GSL_DBL_EPSILON * (tkmax - tkmin + 2.0) * fabs(result->val);
return GSL_SUCCESS;
}
}
int
gsl_sf_coupling_RacahW_e(int two_ja, int two_jb, int two_jc,
int two_jd, int two_je, int two_jf,
gsl_sf_result * result)
{
int status = gsl_sf_coupling_6j_e(two_ja, two_jb, two_je, two_jd, two_jc, two_jf, result);
int phase_sum = (two_ja + two_jb + two_jc + two_jd)/2;
result->val *= ( GSL_IS_ODD(phase_sum) ? -1.0 : 1.0 );
return status;
}
int
gsl_sf_coupling_9j_e(int two_ja, int two_jb, int two_jc,
int two_jd, int two_je, int two_jf,
int two_jg, int two_jh, int two_ji,
gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if( two_ja < 0 || two_jb < 0 || two_jc < 0
|| two_jd < 0 || two_je < 0 || two_jf < 0
|| two_jg < 0 || two_jh < 0 || two_ji < 0
) {
DOMAIN_ERROR(result);
}
else if( triangle_selection_fails(two_ja, two_jb, two_jc)
|| triangle_selection_fails(two_jd, two_je, two_jf)
|| triangle_selection_fails(two_jg, two_jh, two_ji)
|| triangle_selection_fails(two_ja, two_jd, two_jg)
|| triangle_selection_fails(two_jb, two_je, two_jh)
|| triangle_selection_fails(two_jc, two_jf, two_ji)
) {
result->val = 0.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else {
int tk;
int tkmin = locMax3(abs(two_ja-two_ji), abs(two_jh-two_jd), abs(two_jb-two_jf));
int tkmax = locMin3(two_ja + two_ji, two_jh + two_jd, two_jb + two_jf);
double sum_pos = 0.0;
double sum_neg = 0.0;
double sumsq_err = 0.0;
double phase;
for(tk=tkmin; tk<=tkmax; tk += 2) {
gsl_sf_result s1, s2, s3;
double term;
double term_err;
int status = 0;
status += gsl_sf_coupling_6j_e(two_ja, two_ji, tk, two_jh, two_jd, two_jg, &s1);
status += gsl_sf_coupling_6j_e(two_jb, two_jf, tk, two_jd, two_jh, two_je, &s2);
status += gsl_sf_coupling_6j_e(two_ja, two_ji, tk, two_jf, two_jb, two_jc, &s3);
if(status != GSL_SUCCESS) {
OVERFLOW_ERROR(result);
}
term = s1.val * s2.val * s3.val;
term_err = s1.err * fabs(s2.val*s3.val);
term_err += s2.err * fabs(s1.val*s3.val);
term_err += s3.err * fabs(s1.val*s2.val);
if(term >= 0.0) {
sum_pos += (tk + 1) * term;
}
else {
sum_neg -= (tk + 1) * term;
}
sumsq_err += ((tk+1) * term_err) * ((tk+1) * term_err);
}
phase = GSL_IS_ODD(tkmin) ? -1.0 : 1.0;
result->val = phase * (sum_pos - sum_neg);
result->err = 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg);
result->err += sqrt(sumsq_err / (0.5*(tkmax-tkmin)+1.0));
result->err += 2.0 * GSL_DBL_EPSILON * (tkmax-tkmin + 2.0) * fabs(result->val);
return GSL_SUCCESS;
}
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_coupling_3j(int two_ja, int two_jb, int two_jc,
int two_ma, int two_mb, int two_mc)
{
EVAL_RESULT(gsl_sf_coupling_3j_e(two_ja, two_jb, two_jc,
two_ma, two_mb, two_mc,
&result));
}
double gsl_sf_coupling_6j_INCORRECT(int two_ja, int two_jb, int two_jc,
int two_jd, int two_je, int two_jf)
{
EVAL_RESULT(gsl_sf_coupling_6j_INCORRECT_e(two_ja, two_jb, two_jc,
two_jd, two_je, two_jf,
&result));
}
double gsl_sf_coupling_6j(int two_ja, int two_jb, int two_jc,
int two_jd, int two_je, int two_jf)
{
EVAL_RESULT(gsl_sf_coupling_6j_e(two_ja, two_jb, two_jc,
two_jd, two_je, two_jf,
&result));
}
double gsl_sf_coupling_RacahW(int two_ja, int two_jb, int two_jc,
int two_jd, int two_je, int two_jf)
{
EVAL_RESULT(gsl_sf_coupling_RacahW_e(two_ja, two_jb, two_jc,
two_jd, two_je, two_jf,
&result));
}
double gsl_sf_coupling_9j(int two_ja, int two_jb, int two_jc,
int two_jd, int two_je, int two_jf,
int two_jg, int two_jh, int two_ji)
{
EVAL_RESULT(gsl_sf_coupling_9j_e(two_ja, two_jb, two_jc,
two_jd, two_je, two_jf,
two_jg, two_jh, two_ji,
&result));
}
|