1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
|
/* specfunc/expint.c
*
* Copyright (C) 2007 Brian Gough
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_expint.h>
#include <gsl/gsl_sf_gamma.h>
#include "error.h"
#include "check.h"
#include "chebyshev.h"
#include "cheb_eval.c"
/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/
/*
Chebyshev expansions: based on SLATEC e1.f, W. Fullerton
Series for AE11 on the interval -1.00000D-01 to 0.
with weighted error 1.76E-17
log weighted error 16.75
significant figures required 15.70
decimal places required 17.55
Series for AE12 on the interval -2.50000D-01 to -1.00000D-01
with weighted error 5.83E-17
log weighted error 16.23
significant figures required 15.76
decimal places required 16.93
Series for E11 on the interval -4.00000D+00 to -1.00000D+00
with weighted error 1.08E-18
log weighted error 17.97
significant figures required 19.02
decimal places required 18.61
Series for E12 on the interval -1.00000D+00 to 1.00000D+00
with weighted error 3.15E-18
log weighted error 17.50
approx significant figures required 15.8
decimal places required 18.10
Series for AE13 on the interval 2.50000D-01 to 1.00000D+00
with weighted error 2.34E-17
log weighted error 16.63
significant figures required 16.14
decimal places required 17.33
Series for AE14 on the interval 0. to 2.50000D-01
with weighted error 5.41E-17
log weighted error 16.27
significant figures required 15.38
decimal places required 16.97
*/
static double AE11_data[39] = {
0.121503239716065790,
-0.065088778513550150,
0.004897651357459670,
-0.000649237843027216,
0.000093840434587471,
0.000000420236380882,
-0.000008113374735904,
0.000002804247688663,
0.000000056487164441,
-0.000000344809174450,
0.000000058209273578,
0.000000038711426349,
-0.000000012453235014,
-0.000000005118504888,
0.000000002148771527,
0.000000000868459898,
-0.000000000343650105,
-0.000000000179796603,
0.000000000047442060,
0.000000000040423282,
-0.000000000003543928,
-0.000000000008853444,
-0.000000000000960151,
0.000000000001692921,
0.000000000000607990,
-0.000000000000224338,
-0.000000000000200327,
-0.000000000000006246,
0.000000000000045571,
0.000000000000016383,
-0.000000000000005561,
-0.000000000000006074,
-0.000000000000000862,
0.000000000000001223,
0.000000000000000716,
-0.000000000000000024,
-0.000000000000000201,
-0.000000000000000082,
0.000000000000000017
};
static cheb_series AE11_cs = {
AE11_data,
38,
-1, 1,
20
};
static double AE12_data[25] = {
0.582417495134726740,
-0.158348850905782750,
-0.006764275590323141,
0.005125843950185725,
0.000435232492169391,
-0.000143613366305483,
-0.000041801320556301,
-0.000002713395758640,
0.000001151381913647,
0.000000420650022012,
0.000000066581901391,
0.000000000662143777,
-0.000000002844104870,
-0.000000000940724197,
-0.000000000177476602,
-0.000000000015830222,
0.000000000002905732,
0.000000000001769356,
0.000000000000492735,
0.000000000000093709,
0.000000000000010707,
-0.000000000000000537,
-0.000000000000000716,
-0.000000000000000244,
-0.000000000000000058
};
static cheb_series AE12_cs = {
AE12_data,
24,
-1, 1,
15
};
static double E11_data[19] = {
-16.11346165557149402600,
7.79407277874268027690,
-1.95540581886314195070,
0.37337293866277945612,
-0.05692503191092901938,
0.00721107776966009185,
-0.00078104901449841593,
0.00007388093356262168,
-0.00000620286187580820,
0.00000046816002303176,
-0.00000003209288853329,
0.00000000201519974874,
-0.00000000011673686816,
0.00000000000627627066,
-0.00000000000031481541,
0.00000000000001479904,
-0.00000000000000065457,
0.00000000000000002733,
-0.00000000000000000108
};
static cheb_series E11_cs = {
E11_data,
18,
-1, 1,
13
};
static double E12_data[16] = {
-0.03739021479220279500,
0.04272398606220957700,
-0.13031820798497005440,
0.01441912402469889073,
-0.00134617078051068022,
0.00010731029253063780,
-0.00000742999951611943,
0.00000045377325690753,
-0.00000002476417211390,
0.00000000122076581374,
-0.00000000005485141480,
0.00000000000226362142,
-0.00000000000008635897,
0.00000000000000306291,
-0.00000000000000010148,
0.00000000000000000315
};
static cheb_series E12_cs = {
E12_data,
15,
-1, 1,
10
};
static double AE13_data[25] = {
-0.605773246640603460,
-0.112535243483660900,
0.013432266247902779,
-0.001926845187381145,
0.000309118337720603,
-0.000053564132129618,
0.000009827812880247,
-0.000001885368984916,
0.000000374943193568,
-0.000000076823455870,
0.000000016143270567,
-0.000000003466802211,
0.000000000758754209,
-0.000000000168864333,
0.000000000038145706,
-0.000000000008733026,
0.000000000002023672,
-0.000000000000474132,
0.000000000000112211,
-0.000000000000026804,
0.000000000000006457,
-0.000000000000001568,
0.000000000000000383,
-0.000000000000000094,
0.000000000000000023
};
static cheb_series AE13_cs = {
AE13_data,
24,
-1, 1,
15
};
static double AE14_data[26] = {
-0.18929180007530170,
-0.08648117855259871,
0.00722410154374659,
-0.00080975594575573,
0.00010999134432661,
-0.00001717332998937,
0.00000298562751447,
-0.00000056596491457,
0.00000011526808397,
-0.00000002495030440,
0.00000000569232420,
-0.00000000135995766,
0.00000000033846628,
-0.00000000008737853,
0.00000000002331588,
-0.00000000000641148,
0.00000000000181224,
-0.00000000000052538,
0.00000000000015592,
-0.00000000000004729,
0.00000000000001463,
-0.00000000000000461,
0.00000000000000148,
-0.00000000000000048,
0.00000000000000016,
-0.00000000000000005
};
static cheb_series AE14_cs = {
AE14_data,
25,
-1, 1,
13
};
/* implementation for E1, allowing for scaling by exp(x) */
static
int expint_E1_impl(const double x, gsl_sf_result * result, const int scale)
{
const double xmaxt = -GSL_LOG_DBL_MIN; /* XMAXT = -LOG (R1MACH(1)) */
const double xmax = xmaxt - log(xmaxt); /* XMAX = XMAXT - LOG(XMAXT) */
/* CHECK_POINTER(result) */
if(x < -xmax && !scale) {
OVERFLOW_ERROR(result);
}
else if(x <= -10.0) {
const double s = 1.0/x * ( scale ? 1.0 : exp(-x) );
gsl_sf_result result_c;
cheb_eval_e(&AE11_cs, 20.0/x+1.0, &result_c);
result->val = s * (1.0 + result_c.val);
result->err = s * result_c.err;
result->err += 2.0 * GSL_DBL_EPSILON * (fabs(x) + 1.0) * fabs(result->val);
return GSL_SUCCESS;
}
else if(x <= -4.0) {
const double s = 1.0/x * ( scale ? 1.0 : exp(-x) );
gsl_sf_result result_c;
cheb_eval_e(&AE12_cs, (40.0/x+7.0)/3.0, &result_c);
result->val = s * (1.0 + result_c.val);
result->err = s * result_c.err;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else if(x <= -1.0) {
const double ln_term = -log(fabs(x));
const double scale_factor = ( scale ? exp(x) : 1.0 );
gsl_sf_result result_c;
cheb_eval_e(&E11_cs, (2.0*x+5.0)/3.0, &result_c);
result->val = scale_factor * (ln_term + result_c.val);
result->err = scale_factor * (result_c.err + GSL_DBL_EPSILON * fabs(ln_term));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else if(x == 0.0) {
DOMAIN_ERROR(result);
}
else if(x <= 1.0) {
const double ln_term = -log(fabs(x));
const double scale_factor = ( scale ? exp(x) : 1.0 );
gsl_sf_result result_c;
cheb_eval_e(&E12_cs, x, &result_c);
result->val = scale_factor * (ln_term - 0.6875 + x + result_c.val);
result->err = scale_factor * (result_c.err + GSL_DBL_EPSILON * fabs(ln_term));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else if(x <= 4.0) {
const double s = 1.0/x * ( scale ? 1.0 : exp(-x) );
gsl_sf_result result_c;
cheb_eval_e(&AE13_cs, (8.0/x-5.0)/3.0, &result_c);
result->val = s * (1.0 + result_c.val);
result->err = s * result_c.err;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else if(x <= xmax || scale) {
const double s = 1.0/x * ( scale ? 1.0 : exp(-x) );
gsl_sf_result result_c;
cheb_eval_e(&AE14_cs, 8.0/x-1.0, &result_c);
result->val = s * (1.0 + result_c.val);
result->err = s * (GSL_DBL_EPSILON + result_c.err);
result->err += 2.0 * (x + 1.0) * GSL_DBL_EPSILON * fabs(result->val);
if(result->val == 0.0)
UNDERFLOW_ERROR(result);
else
return GSL_SUCCESS;
}
else {
UNDERFLOW_ERROR(result);
}
}
static
int expint_E2_impl(const double x, gsl_sf_result * result, const int scale)
{
const double xmaxt = -GSL_LOG_DBL_MIN;
const double xmax = xmaxt - log(xmaxt);
/* CHECK_POINTER(result) */
if(x < -xmax && !scale) {
OVERFLOW_ERROR(result);
}
else if (x == 0.0) {
result->val = 1.0;
result->err = 0.0;
return GSL_SUCCESS;
} else if(x < 100.0) {
const double ex = ( scale ? 1.0 : exp(-x) );
gsl_sf_result result_E1;
int stat_E1 = expint_E1_impl(x, &result_E1, scale);
result->val = ex - x*result_E1.val;
result->err = GSL_DBL_EPSILON*ex + fabs(x) * result_E1.err;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return stat_E1;
}
else if(x < xmax || scale) {
const double s = ( scale ? 1.0 : exp(-x) );
const double c1 = -2.0;
const double c2 = 6.0;
const double c3 = -24.0;
const double c4 = 120.0;
const double c5 = -720.0;
const double c6 = 5040.0;
const double c7 = -40320.0;
const double c8 = 362880.0;
const double c9 = -3628800.0;
const double c10 = 39916800.0;
const double c11 = -479001600.0;
const double c12 = 6227020800.0;
const double c13 = -87178291200.0;
const double y = 1.0/x;
const double sum6 = c6+y*(c7+y*(c8+y*(c9+y*(c10+y*(c11+y*(c12+y*c13))))));
const double sum = y*(c1+y*(c2+y*(c3+y*(c4+y*(c5+y*sum6)))));
result->val = s * (1.0 + sum)/x;
result->err = 2.0 * (x + 1.0) * GSL_DBL_EPSILON * result->val;
if(result->val == 0.0)
UNDERFLOW_ERROR(result);
else
return GSL_SUCCESS;
}
else {
UNDERFLOW_ERROR(result);
}
}
static
int expint_En_impl(const int n, const double x, gsl_sf_result * result, const int scale)
{
if (n < 0) {
DOMAIN_ERROR(result);
} else if (n == 0) {
if (x == 0) {
DOMAIN_ERROR(result);
} else {
result->val = (scale ? 1.0 : exp(-x)) / x;
result->err = 2 * GSL_DBL_EPSILON * fabs(result->val);
CHECK_UNDERFLOW(result);
return GSL_SUCCESS;
}
} else if (n == 1) {
return expint_E1_impl(x, result, scale);
} else if (n == 2) {
return expint_E2_impl(x, result, scale);
} else {
if(x < 0) {
DOMAIN_ERROR(result);
}
if (x == 0) {
result->val = (scale ? exp(x) : 1 ) * (1/(n-1.0));
result->err = 2 * GSL_DBL_EPSILON * fabs(result->val);
CHECK_UNDERFLOW(result);
return GSL_SUCCESS;
} else {
gsl_sf_result result_g;
double prefactor = pow(x, n-1);
int status = gsl_sf_gamma_inc_e (1-n, x, &result_g);
double scale_factor = ( scale ? exp(x) : 1.0 );
result->val = scale_factor * prefactor * result_g.val;
result->err = 2 * GSL_DBL_EPSILON * fabs(result->val);
result->err += 2 * fabs(scale_factor * prefactor * result_g.err);
if (status == GSL_SUCCESS) CHECK_UNDERFLOW(result);
return status;
}
}
}
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int gsl_sf_expint_E1_e(const double x, gsl_sf_result * result)
{
return expint_E1_impl(x, result, 0);
}
int gsl_sf_expint_E1_scaled_e(const double x, gsl_sf_result * result)
{
return expint_E1_impl(x, result, 1);
}
int gsl_sf_expint_E2_e(const double x, gsl_sf_result * result)
{
return expint_E2_impl(x, result, 0);
}
int gsl_sf_expint_E2_scaled_e(const double x, gsl_sf_result * result)
{
return expint_E2_impl(x, result, 1);
}
int gsl_sf_expint_En_e(const int n, const double x, gsl_sf_result * result)
{
return expint_En_impl(n, x, result, 0);
}
int gsl_sf_expint_En_scaled_e(const int n, const double x, gsl_sf_result * result)
{
return expint_En_impl(n, x, result, 1);
}
int gsl_sf_expint_Ei_e(const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
{
int status = gsl_sf_expint_E1_e(-x, result);
result->val = -result->val;
return status;
}
}
int gsl_sf_expint_Ei_scaled_e(const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
{
int status = gsl_sf_expint_E1_scaled_e(-x, result);
result->val = -result->val;
return status;
}
}
#if 0
static double recurse_En(int n, double x, double E1)
{
int i;
double En = E1;
double ex = exp(-x);
for(i=2; i<=n; i++) {
En = 1./(i-1) * (ex - x * En);
}
return En;
}
#endif
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_expint_E1(const double x)
{
EVAL_RESULT(gsl_sf_expint_E1_e(x, &result));
}
double gsl_sf_expint_E1_scaled(const double x)
{
EVAL_RESULT(gsl_sf_expint_E1_scaled_e(x, &result));
}
double gsl_sf_expint_E2(const double x)
{
EVAL_RESULT(gsl_sf_expint_E2_e(x, &result));
}
double gsl_sf_expint_E2_scaled(const double x)
{
EVAL_RESULT(gsl_sf_expint_E2_scaled_e(x, &result));
}
double gsl_sf_expint_En(const int n, const double x)
{
EVAL_RESULT(gsl_sf_expint_En_e(n, x, &result));
}
double gsl_sf_expint_En_scaled(const int n, const double x)
{
EVAL_RESULT(gsl_sf_expint_En_scaled_e(n, x, &result));
}
double gsl_sf_expint_Ei(const double x)
{
EVAL_RESULT(gsl_sf_expint_Ei_e(x, &result));
}
double gsl_sf_expint_Ei_scaled(const double x)
{
EVAL_RESULT(gsl_sf_expint_Ei_scaled_e(x, &result));
}
|