1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
/* specfunc/hyperg.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
/* Miscellaneous implementations of use
* for evaluation of hypergeometric functions.
*/
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_gamma.h>
#include "error.h"
#include "hyperg.h"
#define SUM_LARGE (1.0e-5*GSL_DBL_MAX)
int
gsl_sf_hyperg_1F1_series_e(const double a, const double b, const double x,
gsl_sf_result * result
)
{
double an = a;
double bn = b;
double n = 1.0;
double del = 1.0;
double abs_del = 1.0;
double max_abs_del = 1.0;
double sum_val = 1.0;
double sum_err = 0.0;
while(abs_del/fabs(sum_val) > 0.25*GSL_DBL_EPSILON) {
double u, abs_u;
if(bn == 0.0) {
DOMAIN_ERROR(result);
}
if(an == 0.0) {
result->val = sum_val;
result->err = sum_err;
result->err += 2.0 * GSL_DBL_EPSILON * n * fabs(sum_val);
return GSL_SUCCESS;
}
if (n > 10000.0) {
result->val = sum_val;
result->err = sum_err;
GSL_ERROR ("hypergeometric series failed to converge", GSL_EFAILED);
}
u = x * (an/(bn*n));
abs_u = fabs(u);
if(abs_u > 1.0 && max_abs_del > GSL_DBL_MAX/abs_u) {
result->val = sum_val;
result->err = fabs(sum_val);
GSL_ERROR ("overflow", GSL_EOVRFLW);
}
del *= u;
sum_val += del;
if(fabs(sum_val) > SUM_LARGE) {
result->val = sum_val;
result->err = fabs(sum_val);
GSL_ERROR ("overflow", GSL_EOVRFLW);
}
abs_del = fabs(del);
max_abs_del = GSL_MAX_DBL(abs_del, max_abs_del);
sum_err += 2.0*GSL_DBL_EPSILON*abs_del;
an += 1.0;
bn += 1.0;
n += 1.0;
}
result->val = sum_val;
result->err = sum_err;
result->err += abs_del;
result->err += 2.0 * GSL_DBL_EPSILON * n * fabs(sum_val);
return GSL_SUCCESS;
}
int
gsl_sf_hyperg_1F1_large_b_e(const double a, const double b, const double x, gsl_sf_result * result)
{
if(fabs(x/b) < 1.0) {
const double u = x/b;
const double v = 1.0/(1.0-u);
const double pre = pow(v,a);
const double uv = u*v;
const double uv2 = uv*uv;
const double t1 = a*(a+1.0)/(2.0*b)*uv2;
const double t2a = a*(a+1.0)/(24.0*b*b)*uv2;
const double t2b = 12.0 + 16.0*(a+2.0)*uv + 3.0*(a+2.0)*(a+3.0)*uv2;
const double t2 = t2a*t2b;
result->val = pre * (1.0 - t1 + t2);
result->err = pre * GSL_DBL_EPSILON * (1.0 + fabs(t1) + fabs(t2));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
DOMAIN_ERROR(result);
}
}
int
gsl_sf_hyperg_U_large_b_e(const double a, const double b, const double x,
gsl_sf_result * result,
double * ln_multiplier
)
{
double N = floor(b); /* b = N + eps */
double eps = b - N;
if(fabs(eps) < GSL_SQRT_DBL_EPSILON) {
double lnpre_val;
double lnpre_err;
gsl_sf_result M;
if(b > 1.0) {
double tmp = (1.0-b)*log(x);
gsl_sf_result lg_bm1;
gsl_sf_result lg_a;
gsl_sf_lngamma_e(b-1.0, &lg_bm1);
gsl_sf_lngamma_e(a, &lg_a);
lnpre_val = tmp + x + lg_bm1.val - lg_a.val;
lnpre_err = lg_bm1.err + lg_a.err + GSL_DBL_EPSILON * (fabs(x) + fabs(tmp));
gsl_sf_hyperg_1F1_large_b_e(1.0-a, 2.0-b, -x, &M);
}
else {
gsl_sf_result lg_1mb;
gsl_sf_result lg_1pamb;
gsl_sf_lngamma_e(1.0-b, &lg_1mb);
gsl_sf_lngamma_e(1.0+a-b, &lg_1pamb);
lnpre_val = lg_1mb.val - lg_1pamb.val;
lnpre_err = lg_1mb.err + lg_1pamb.err;
gsl_sf_hyperg_1F1_large_b_e(a, b, x, &M);
}
if(lnpre_val > GSL_LOG_DBL_MAX-10.0) {
result->val = M.val;
result->err = M.err;
*ln_multiplier = lnpre_val;
GSL_ERROR ("overflow", GSL_EOVRFLW);
}
else {
gsl_sf_result epre;
int stat_e = gsl_sf_exp_err_e(lnpre_val, lnpre_err, &epre);
result->val = epre.val * M.val;
result->err = epre.val * M.err + epre.err * fabs(M.val);
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
*ln_multiplier = 0.0;
return stat_e;
}
}
else {
double omb_lnx = (1.0-b)*log(x);
gsl_sf_result lg_1mb; double sgn_1mb;
gsl_sf_result lg_1pamb; double sgn_1pamb;
gsl_sf_result lg_bm1; double sgn_bm1;
gsl_sf_result lg_a; double sgn_a;
gsl_sf_result M1, M2;
double lnpre1_val, lnpre2_val;
double lnpre1_err, lnpre2_err;
double sgpre1, sgpre2;
gsl_sf_hyperg_1F1_large_b_e( a, b, x, &M1);
gsl_sf_hyperg_1F1_large_b_e(1.0-a, 2.0-b, x, &M2);
gsl_sf_lngamma_sgn_e(1.0-b, &lg_1mb, &sgn_1mb);
gsl_sf_lngamma_sgn_e(1.0+a-b, &lg_1pamb, &sgn_1pamb);
gsl_sf_lngamma_sgn_e(b-1.0, &lg_bm1, &sgn_bm1);
gsl_sf_lngamma_sgn_e(a, &lg_a, &sgn_a);
lnpre1_val = lg_1mb.val - lg_1pamb.val;
lnpre1_err = lg_1mb.err + lg_1pamb.err;
lnpre2_val = lg_bm1.val - lg_a.val - omb_lnx - x;
lnpre2_err = lg_bm1.err + lg_a.err + GSL_DBL_EPSILON * (fabs(omb_lnx)+fabs(x));
sgpre1 = sgn_1mb * sgn_1pamb;
sgpre2 = sgn_bm1 * sgn_a;
if(lnpre1_val > GSL_LOG_DBL_MAX-10.0 || lnpre2_val > GSL_LOG_DBL_MAX-10.0) {
double max_lnpre_val = GSL_MAX(lnpre1_val,lnpre2_val);
double max_lnpre_err = GSL_MAX(lnpre1_err,lnpre2_err);
double lp1 = lnpre1_val - max_lnpre_val;
double lp2 = lnpre2_val - max_lnpre_val;
double t1 = sgpre1*exp(lp1);
double t2 = sgpre2*exp(lp2);
result->val = t1*M1.val + t2*M2.val;
result->err = fabs(t1)*M1.err + fabs(t2)*M2.err;
result->err += GSL_DBL_EPSILON * exp(max_lnpre_err) * (fabs(t1*M1.val) + fabs(t2*M2.val));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
*ln_multiplier = max_lnpre_val;
GSL_ERROR ("overflow", GSL_EOVRFLW);
}
else {
double t1 = sgpre1*exp(lnpre1_val);
double t2 = sgpre2*exp(lnpre2_val);
result->val = t1*M1.val + t2*M2.val;
result->err = fabs(t1) * M1.err + fabs(t2)*M2.err;
result->err += GSL_DBL_EPSILON * (exp(lnpre1_err)*fabs(t1*M1.val) + exp(lnpre2_err)*fabs(t2*M2.val));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
*ln_multiplier = 0.0;
return GSL_SUCCESS;
}
}
}
/* [Carlson, p.109] says the error in truncating this asymptotic series
* is less than the absolute value of the first neglected term.
*
* A termination argument is provided, so that the series will
* be summed at most up to n=n_trunc. If n_trunc is set negative,
* then the series is summed until it appears to start diverging.
*/
int
gsl_sf_hyperg_2F0_series_e(const double a, const double b, const double x,
int n_trunc,
gsl_sf_result * result
)
{
const int maxiter = 2000;
double an = a;
double bn = b;
double n = 1.0;
double sum = 1.0;
double del = 1.0;
double abs_del = 1.0;
double max_abs_del = 1.0;
double last_abs_del = 1.0;
while(abs_del/fabs(sum) > GSL_DBL_EPSILON && n < maxiter) {
double u = an * (bn/n * x);
double abs_u = fabs(u);
if(abs_u > 1.0 && (max_abs_del > GSL_DBL_MAX/abs_u)) {
result->val = sum;
result->err = fabs(sum);
GSL_ERROR ("overflow", GSL_EOVRFLW);
}
del *= u;
sum += del;
abs_del = fabs(del);
if(abs_del > last_abs_del) break; /* series is probably starting to grow */
last_abs_del = abs_del;
max_abs_del = GSL_MAX(abs_del, max_abs_del);
an += 1.0;
bn += 1.0;
n += 1.0;
if(an == 0.0 || bn == 0.0) break; /* series terminated */
if(n_trunc >= 0 && n >= n_trunc) break; /* reached requested timeout */
}
result->val = sum;
result->err = GSL_DBL_EPSILON * n + abs_del;
if(n >= maxiter)
GSL_ERROR ("error", GSL_EMAXITER);
else
return GSL_SUCCESS;
}
|