1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
/* specfunc/hyperg_0F1.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_bessel.h>
#include <gsl/gsl_sf_hyperg.h>
#include "error.h"
#define locEPS (1000.0*GSL_DBL_EPSILON)
/* Evaluate bessel_I(nu, x), allowing nu < 0.
* This is fine here because we do not not allow
* nu to be a negative integer.
* x > 0.
*/
static
int
hyperg_0F1_bessel_I(const double nu, const double x, gsl_sf_result * result)
{
if(x > GSL_LOG_DBL_MAX) {
OVERFLOW_ERROR(result);
}
if(nu < 0.0) {
const double anu = -nu;
const double s = 2.0/M_PI * sin(anu*M_PI);
const double ex = exp(x);
gsl_sf_result I;
gsl_sf_result K;
int stat_I = gsl_sf_bessel_Inu_scaled_e(anu, x, &I);
int stat_K = gsl_sf_bessel_Knu_scaled_e(anu, x, &K);
result->val = ex * I.val + s * (K.val / ex);
result->err = ex * I.err + fabs(s * K.err/ex);
result->err += fabs(s * (K.val/ex)) * GSL_DBL_EPSILON * anu * M_PI;
return GSL_ERROR_SELECT_2(stat_K, stat_I);
}
else {
const double ex = exp(x);
gsl_sf_result I;
int stat_I = gsl_sf_bessel_Inu_scaled_e(nu, x, &I);
result->val = ex * I.val;
result->err = ex * I.err + GSL_DBL_EPSILON * fabs(result->val);
return stat_I;
}
}
/* Evaluate bessel_J(nu, x), allowing nu < 0.
* This is fine here because we do not not allow
* nu to be a negative integer.
* x > 0.
*/
static
int
hyperg_0F1_bessel_J(const double nu, const double x, gsl_sf_result * result)
{
if(nu < 0.0) {
const double anu = -nu;
const double s = sin(anu*M_PI);
const double c = cos(anu*M_PI);
gsl_sf_result J;
gsl_sf_result Y;
int stat_J = gsl_sf_bessel_Jnu_e(anu, x, &J);
int stat_Y = gsl_sf_bessel_Ynu_e(anu, x, &Y);
result->val = c * J.val - s * Y.val;
result->err = fabs(c * J.err) + fabs(s * Y.err);
result->err += fabs(anu * M_PI) * GSL_DBL_EPSILON * fabs(J.val + Y.val);
return GSL_ERROR_SELECT_2(stat_Y, stat_J);
}
else {
return gsl_sf_bessel_Jnu_e(nu, x, result);
}
}
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int
gsl_sf_hyperg_0F1_e(double c, double x, gsl_sf_result * result)
{
const double rintc = floor(c + 0.5);
const int c_neg_integer = (c < 0.0 && fabs(c - rintc) < locEPS);
/* CHECK_POINTER(result) */
if(c == 0.0 || c_neg_integer) {
DOMAIN_ERROR(result);
}
else if(x < 0.0) {
gsl_sf_result Jcm1;
gsl_sf_result lg_c;
double sgn;
int stat_g = gsl_sf_lngamma_sgn_e(c, &lg_c, &sgn);
int stat_J = hyperg_0F1_bessel_J(c-1.0, 2.0*sqrt(-x), &Jcm1);
if(stat_g != GSL_SUCCESS) {
result->val = 0.0;
result->err = 0.0;
return stat_g;
}
else if(Jcm1.val == 0.0) {
result->val = 0.0;
result->err = 0.0;
return stat_J;
}
else {
const double tl = log(-x)*0.5*(1.0-c);
double ln_pre_val = lg_c.val + tl;
double ln_pre_err = lg_c.err + 2.0 * GSL_DBL_EPSILON * fabs(tl);
return gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err,
sgn*Jcm1.val, Jcm1.err,
result);
}
}
else if(x == 0.0) {
result->val = 1.0;
result->err = 1.0;
return GSL_SUCCESS;
}
else {
gsl_sf_result Icm1;
gsl_sf_result lg_c;
double sgn;
int stat_g = gsl_sf_lngamma_sgn_e(c, &lg_c, &sgn);
int stat_I = hyperg_0F1_bessel_I(c-1.0, 2.0*sqrt(x), &Icm1);
if(stat_g != GSL_SUCCESS) {
result->val = 0.0;
result->err = 0.0;
return stat_g;
}
else if(Icm1.val == 0.0) {
result->val = 0.0;
result->err = 0.0;
return stat_I;
}
else {
const double tl = log(x)*0.5*(1.0-c);
const double ln_pre_val = lg_c.val + tl;
const double ln_pre_err = lg_c.err + 2.0 * GSL_DBL_EPSILON * fabs(tl);
return gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err,
sgn*Icm1.val, Icm1.err,
result);
}
}
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_hyperg_0F1(const double c, const double x)
{
EVAL_RESULT(gsl_sf_hyperg_0F1_e(c, x, &result));
}
|