1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
|
/* specfunc/hyperg_U.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
* Copyright (C) 2009, 2010 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_bessel.h>
#include <gsl/gsl_sf_laguerre.h>
#include <gsl/gsl_sf_pow_int.h>
#include <gsl/gsl_sf_hyperg.h>
#include "error.h"
#include "hyperg.h"
#define INT_THRESHOLD (1000.0*GSL_DBL_EPSILON)
#define SERIES_EVAL_OK(a,b,x) ((fabs(a) < 5 && b < 5 && x < 2.0) || (fabs(a) < 10 && b < 10 && x < 1.0))
#define ASYMP_EVAL_OK(a,b,x) (GSL_MAX_DBL(fabs(a),1.0)*GSL_MAX_DBL(fabs(1.0+a-b),1.0) < 0.99*fabs(x))
/* Log[U(a,2a,x)]
* [Abramowitz+stegun, 13.6.21]
* Assumes x > 0, a > 1/2.
*/
static
int
hyperg_lnU_beq2a(const double a, const double x, gsl_sf_result * result)
{
const double lx = log(x);
const double nu = a - 0.5;
const double lnpre = 0.5*(x - M_LNPI) - nu*lx;
gsl_sf_result lnK;
gsl_sf_bessel_lnKnu_e(nu, 0.5*x, &lnK);
result->val = lnpre + lnK.val;
result->err = 2.0 * GSL_DBL_EPSILON * (fabs(0.5*x) + 0.5*M_LNPI + fabs(nu*lx));
result->err += lnK.err;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
/* Evaluate u_{N+1}/u_N by Steed's continued fraction method.
*
* u_N := Gamma[a+N]/Gamma[a] U(a + N, b, x)
*
* u_{N+1}/u_N = (a+N) U(a+N+1,b,x)/U(a+N,b,x)
*/
static
int
hyperg_U_CF1(const double a, const double b, const int N, const double x,
double * result, int * count)
{
const double RECUR_BIG = GSL_SQRT_DBL_MAX;
const int maxiter = 20000;
int n = 1;
double Anm2 = 1.0;
double Bnm2 = 0.0;
double Anm1 = 0.0;
double Bnm1 = 1.0;
double a1 = -(a + N);
double b1 = (b - 2.0*a - x - 2.0*(N+1));
double An = b1*Anm1 + a1*Anm2;
double Bn = b1*Bnm1 + a1*Bnm2;
double an, bn;
double fn = An/Bn;
while(n < maxiter) {
double old_fn;
double del;
n++;
Anm2 = Anm1;
Bnm2 = Bnm1;
Anm1 = An;
Bnm1 = Bn;
an = -(a + N + n - b)*(a + N + n - 1.0);
bn = (b - 2.0*a - x - 2.0*(N+n));
An = bn*Anm1 + an*Anm2;
Bn = bn*Bnm1 + an*Bnm2;
if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) {
An /= RECUR_BIG;
Bn /= RECUR_BIG;
Anm1 /= RECUR_BIG;
Bnm1 /= RECUR_BIG;
Anm2 /= RECUR_BIG;
Bnm2 /= RECUR_BIG;
}
old_fn = fn;
fn = An/Bn;
del = old_fn/fn;
if(fabs(del - 1.0) < 10.0*GSL_DBL_EPSILON) break;
}
*result = fn;
*count = n;
if(n == maxiter)
GSL_ERROR ("error", GSL_EMAXITER);
else
return GSL_SUCCESS;
}
/* Large x asymptotic for x^a U(a,b,x)
* Based on SLATEC D9CHU() [W. Fullerton]
*
* Uses a rational approximation due to Luke.
* See [Luke, Algorithms for the Computation of Special Functions, p. 252]
* [Luke, Utilitas Math. (1977)]
*
* z^a U(a,b,z) ~ 2F0(a,1+a-b,-1/z)
*
* This assumes that a is not a negative integer and
* that 1+a-b is not a negative integer. If one of them
* is, then the 2F0 actually terminates, the above
* relation is an equality, and the sum should be
* evaluated directly [see below].
*/
static
int
d9chu(const double a, const double b, const double x, gsl_sf_result * result)
{
const double EPS = 8.0 * GSL_DBL_EPSILON; /* EPS = 4.0D0*D1MACH(4) */
const int maxiter = 500;
double aa[4], bb[4];
int i;
double bp = 1.0 + a - b;
double ab = a*bp;
double ct2 = 2.0 * (x - ab);
double sab = a + bp;
double ct3 = sab + 1.0 + ab;
double anbn = ct3 + sab + 3.0;
double ct1 = 1.0 + 2.0*x/anbn;
bb[0] = 1.0;
aa[0] = 1.0;
bb[1] = 1.0 + 2.0*x/ct3;
aa[1] = 1.0 + ct2/ct3;
bb[2] = 1.0 + 6.0*ct1*x/ct3;
aa[2] = 1.0 + 6.0*ab/anbn + 3.0*ct1*ct2/ct3;
for(i=4; i<maxiter; i++) {
int j;
double c2;
double d1z;
double g1, g2, g3;
double x2i1 = 2*i - 3;
ct1 = x2i1/(x2i1-2.0);
anbn += x2i1 + sab;
ct2 = (x2i1 - 1.0)/anbn;
c2 = x2i1*ct2 - 1.0;
d1z = 2.0*x2i1*x/anbn;
ct3 = sab*ct2;
g1 = d1z + ct1*(c2+ct3);
g2 = d1z - c2;
g3 = ct1*(1.0 - ct3 - 2.0*ct2);
bb[3] = g1*bb[2] + g2*bb[1] + g3*bb[0];
aa[3] = g1*aa[2] + g2*aa[1] + g3*aa[0];
if(fabs(aa[3]*bb[0]-aa[0]*bb[3]) < EPS*fabs(bb[3]*bb[0])) break;
for(j=0; j<3; j++) {
aa[j] = aa[j+1];
bb[j] = bb[j+1];
}
}
result->val = aa[3]/bb[3];
result->err = 8.0 * GSL_DBL_EPSILON * fabs(result->val);
if(i == maxiter) {
GSL_ERROR ("error", GSL_EMAXITER);
}
else {
return GSL_SUCCESS;
}
}
/* Evaluate asymptotic for z^a U(a,b,z) ~ 2F0(a,1+a-b,-1/z)
* We check for termination of the 2F0 as a special case.
* Assumes x > 0.
* Also assumes a,b are not too large compared to x.
*/
static
int
hyperg_zaU_asymp(const double a, const double b, const double x, gsl_sf_result *result)
{
const double ap = a;
const double bp = 1.0 + a - b;
const double rintap = floor(ap + 0.5);
const double rintbp = floor(bp + 0.5);
const int ap_neg_int = ( ap < 0.0 && fabs(ap - rintap) < INT_THRESHOLD );
const int bp_neg_int = ( bp < 0.0 && fabs(bp - rintbp) < INT_THRESHOLD );
if(ap_neg_int || bp_neg_int) {
/* Evaluate 2F0 polynomial.
*/
double mxi = -1.0/x;
double nmax = -(int)(GSL_MIN(ap,bp) - 0.1);
double tn = 1.0;
double sum = 1.0;
double n = 1.0;
double sum_err = 0.0;
while(n <= nmax) {
double apn = (ap+n-1.0);
double bpn = (bp+n-1.0);
tn *= ((apn/n)*mxi)*bpn;
sum += tn;
sum_err += 2.0 * GSL_DBL_EPSILON * fabs(tn);
n += 1.0;
}
result->val = sum;
result->err = sum_err;
result->err += 2.0 * GSL_DBL_EPSILON * (fabs(nmax)+1.0) * fabs(sum);
return GSL_SUCCESS;
}
else {
return d9chu(a,b,x,result);
}
}
/* Evaluate finite sum which appears below.
*/
static
int
hyperg_U_finite_sum(int N, double a, double b, double x, double xeps,
gsl_sf_result * result)
{
int i;
double sum_val;
double sum_err;
if(N <= 0) {
double t_val = 1.0;
double t_err = 0.0;
gsl_sf_result poch;
int stat_poch;
sum_val = 1.0;
sum_err = 0.0;
for(i=1; i<= -N; i++) {
const double xi1 = i - 1;
const double mult = (a+xi1)*x/((b+xi1)*(xi1+1.0));
t_val *= mult;
t_err += fabs(mult) * t_err + fabs(t_val) * 8.0 * 2.0 * GSL_DBL_EPSILON;
sum_val += t_val;
sum_err += t_err;
}
stat_poch = gsl_sf_poch_e(1.0+a-b, -a, &poch);
result->val = sum_val * poch.val;
result->err = fabs(sum_val) * poch.err + sum_err * fabs(poch.val);
result->err += fabs(poch.val) * (fabs(N) + 2.0) * GSL_DBL_EPSILON * fabs(sum_val);
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
result->err *= 2.0; /* FIXME: fudge factor... why is the error estimate too small? */
return stat_poch;
}
else {
const int M = N - 2;
if(M < 0) {
result->val = 0.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else {
gsl_sf_result gbm1;
gsl_sf_result gamr;
int stat_gbm1;
int stat_gamr;
double t_val = 1.0;
double t_err = 0.0;
sum_val = 1.0;
sum_err = 0.0;
for(i=1; i<=M; i++) {
const double mult = (a-b+i)*x/((1.0-b+i)*i);
t_val *= mult;
t_err += t_err * fabs(mult) + fabs(t_val) * 8.0 * 2.0 * GSL_DBL_EPSILON;
sum_val += t_val;
sum_err += t_err;
}
stat_gbm1 = gsl_sf_gamma_e(b-1.0, &gbm1);
stat_gamr = gsl_sf_gammainv_e(a, &gamr);
if(stat_gbm1 == GSL_SUCCESS) {
gsl_sf_result powx1N;
int stat_p = gsl_sf_pow_int_e(x, 1-N, &powx1N);
double pe_val = powx1N.val * xeps;
double pe_err = powx1N.err * fabs(xeps) + 2.0 * GSL_DBL_EPSILON * fabs(pe_val);
double coeff_val = gbm1.val * gamr.val * pe_val;
double coeff_err = gbm1.err * fabs(gamr.val * pe_val)
+ gamr.err * fabs(gbm1.val * pe_val)
+ fabs(gbm1.val * gamr.val) * pe_err
+ 2.0 * GSL_DBL_EPSILON * fabs(coeff_val);
result->val = sum_val * coeff_val;
result->err = fabs(sum_val) * coeff_err + sum_err * fabs(coeff_val);
result->err += 2.0 * GSL_DBL_EPSILON * (M+2.0) * fabs(result->val);
result->err *= 2.0; /* FIXME: fudge factor... why is the error estimate too small? */
return stat_p;
}
else {
result->val = 0.0;
result->err = 0.0;
return stat_gbm1;
}
}
}
}
/* Evaluate infinite sum which appears below.
*/
static
int
hyperg_U_infinite_sum_stable(int N, double a, double bint, double b, double beps, double x, double xeps, gsl_sf_result sum,
gsl_sf_result * result)
{
const double EPS = 2.0 * GSL_DBL_EPSILON; /* EPS = D1MACH(3) */
int istrt = ( N < 1 ? 1-N : 0 );
double xi = istrt;
gsl_sf_result gamr;
gsl_sf_result powx;
int stat_gamr = gsl_sf_gammainv_e(1.0+a-b, &gamr);
int stat_powx = gsl_sf_pow_int_e(x, istrt, &powx);
double sarg = beps*M_PI;
double sfact = ( sarg != 0.0 ? sarg/sin(sarg) : 1.0 );
double factor_val = sfact * ( GSL_IS_ODD(N) ? -1.0 : 1.0 ) * gamr.val * powx.val;
double factor_err = fabs(gamr.val) * powx.err + fabs(powx.val) * gamr.err
+ 2.0 * GSL_DBL_EPSILON * fabs(factor_val);
gsl_sf_result pochai;
gsl_sf_result gamri1;
gsl_sf_result gamrni;
int stat_pochai = gsl_sf_poch_e(a, xi, &pochai);
int stat_gamri1 = gsl_sf_gammainv_e(xi + 1.0, &gamri1);
int stat_gamrni = gsl_sf_gammainv_e(bint + xi, &gamrni);
int stat_gam123 = GSL_ERROR_SELECT_3(stat_gamr, stat_gamri1, stat_gamrni);
int stat_gamall = GSL_ERROR_SELECT_3(stat_gam123, stat_pochai, stat_powx);
gsl_sf_result pochaxibeps;
gsl_sf_result gamrxi1beps;
int stat_pochaxibeps = gsl_sf_poch_e(a, xi-beps, &pochaxibeps);
int stat_gamrxi1beps = gsl_sf_gammainv_e(xi + 1.0 - beps, &gamrxi1beps);
int stat_all = GSL_ERROR_SELECT_3(stat_gamall, stat_pochaxibeps, stat_gamrxi1beps);
double b0_val = factor_val * pochaxibeps.val * gamrni.val * gamrxi1beps.val;
double b0_err = fabs(factor_val * pochaxibeps.val * gamrni.val) * gamrxi1beps.err
+ fabs(factor_val * pochaxibeps.val * gamrxi1beps.val) * gamrni.err
+ fabs(factor_val * gamrni.val * gamrxi1beps.val) * pochaxibeps.err
+ fabs(pochaxibeps.val * gamrni.val * gamrxi1beps.val) * factor_err
+ 2.0 * GSL_DBL_EPSILON * fabs(b0_val);
/*
C X**(-BEPS) IS VERY DIFFERENT FROM 1.0, SO THE
C STRAIGHTFORWARD FORMULATION IS STABLE.
*/
int i;
double dchu_val;
double dchu_err;
double t_val;
double t_err;
gsl_sf_result dgamrbxi;
int stat_dgamrbxi = gsl_sf_gammainv_e(b+xi, &dgamrbxi);
double a0_val = factor_val * pochai.val * dgamrbxi.val * gamri1.val / beps;
double a0_err = fabs(factor_val * pochai.val * dgamrbxi.val / beps) * gamri1.err
+ fabs(factor_val * pochai.val * gamri1.val / beps) * dgamrbxi.err
+ fabs(factor_val * dgamrbxi.val * gamri1.val / beps) * pochai.err
+ fabs(pochai.val * dgamrbxi.val * gamri1.val / beps) * factor_err
+ 2.0 * GSL_DBL_EPSILON * fabs(a0_val);
stat_all = GSL_ERROR_SELECT_2(stat_all, stat_dgamrbxi);
b0_val = xeps * b0_val / beps;
b0_err = fabs(xeps / beps) * b0_err + 4.0 * GSL_DBL_EPSILON * fabs(b0_val);
dchu_val = sum.val + a0_val - b0_val;
dchu_err = sum.err + a0_err + b0_err
+ 2.0 * GSL_DBL_EPSILON * (fabs(sum.val) + fabs(a0_val) + fabs(b0_val));
for(i=1; i<2000; i++) {
double xi = istrt + i;
double xi1 = istrt + i - 1;
double a0_multiplier = (a+xi1)*x/((b+xi1)*xi);
double b0_multiplier = (a+xi1-beps)*x/((bint+xi1)*(xi-beps));
a0_val *= a0_multiplier;
a0_err += fabs(a0_multiplier) * a0_err;
b0_val *= b0_multiplier;
b0_err += fabs(b0_multiplier) * b0_err;
t_val = a0_val - b0_val;
t_err = a0_err + b0_err;
dchu_val += t_val;
dchu_err += t_err;
if(fabs(t_val) < EPS*fabs(dchu_val)) break;
}
result->val = dchu_val;
result->err = 2.0 * dchu_err;
result->err += 2.0 * fabs(t_val);
result->err += 4.0 * GSL_DBL_EPSILON * (i+2.0) * fabs(dchu_val);
result->err *= 2.0; /* FIXME: fudge factor */
if(i >= 2000) {
GSL_ERROR ("error", GSL_EMAXITER);
}
else {
return stat_all;
}
}
static
int
hyperg_U_infinite_sum_simple(int N, double a, double bint, double b, double beps, double x, double xeps, gsl_sf_result sum,
gsl_sf_result * result)
{
const double EPS = 2.0 * GSL_DBL_EPSILON; /* EPS = D1MACH(3) */
int istrt = ( N < 1 ? 1-N : 0 );
double xi = istrt;
gsl_sf_result powx;
int stat_powx = gsl_sf_pow_int_e(x, istrt, &powx);
double sarg = beps*M_PI;
double sfact = ( sarg != 0.0 ? sarg/sin(sarg) : 1.0 );
double factor_val = sfact * ( GSL_IS_ODD(N) ? -1.0 : 1.0 ) * powx.val;
double factor_err = fabs(powx.err) + 2.0 * GSL_DBL_EPSILON * fabs(factor_val);
gsl_sf_result pochai;
gsl_sf_result gamri1;
gsl_sf_result gamrni;
int stat_pochai = gsl_sf_poch_e(a, xi, &pochai);
int stat_gamri1 = gsl_sf_gammainv_e(xi + 1.0, &gamri1);
int stat_gamrni = gsl_sf_gammainv_e(bint + xi, &gamrni);
int stat_gam123 = GSL_ERROR_SELECT_2(stat_gamri1, stat_gamrni);
int stat_gamall = GSL_ERROR_SELECT_3(stat_gam123, stat_pochai, stat_powx);
gsl_sf_result pochaxibeps;
gsl_sf_result gamrxi1beps;
int stat_pochaxibeps = gsl_sf_poch_e(a, xi-beps, &pochaxibeps);
int stat_gamrxi1beps = gsl_sf_gammainv_e(xi + 1.0 - beps, &gamrxi1beps);
int stat_all = GSL_ERROR_SELECT_3(stat_gamall, stat_pochaxibeps, stat_gamrxi1beps);
double X = sfact * ( GSL_IS_ODD(N) ? -1.0 : 1.0 ) * powx.val * gsl_sf_poch(1 + a - b, xi - 1 + b - beps) * gsl_sf_gammainv(a);
double b0_val = X * gamrni.val * gamrxi1beps.val;
double b0_err = fabs(factor_val * pochaxibeps.val * gamrni.val) * gamrxi1beps.err
+ fabs(factor_val * pochaxibeps.val * gamrxi1beps.val) * gamrni.err
+ fabs(factor_val * gamrni.val * gamrxi1beps.val) * pochaxibeps.err
+ fabs(pochaxibeps.val * gamrni.val * gamrxi1beps.val) * factor_err
+ 2.0 * GSL_DBL_EPSILON * fabs(b0_val);
/*
C X**(-BEPS) IS VERY DIFFERENT FROM 1.0, SO THE
C STRAIGHTFORWARD FORMULATION IS STABLE.
*/
int i;
double dchu_val;
double dchu_err;
double t_val;
double t_err;
gsl_sf_result gamr;
gsl_sf_result dgamrbxi;
int stat_gamr = gsl_sf_gammainv_e(1.0+a-b, &gamr);
int stat_dgamrbxi = gsl_sf_gammainv_e(b+xi, &dgamrbxi);
double a0_val = factor_val * gamr.val * pochai.val * dgamrbxi.val * gamri1.val / beps;
double a0_err = fabs(factor_val * pochai.val * dgamrbxi.val * gamri1.val / beps) * gamr.err
+ fabs(factor_val * gamr.val * dgamrbxi.val * gamri1.val / beps) * pochai.err
+ fabs(factor_val * gamr.val * pochai.val * gamri1.val / beps) * dgamrbxi.err
+ fabs(factor_val * gamr.val * pochai.val * dgamrbxi.val / beps) * gamri1.err
+ fabs(pochai.val * gamr.val * dgamrbxi.val * gamri1.val / beps) * factor_err
+ 2.0 * GSL_DBL_EPSILON * fabs(a0_val);
stat_all = GSL_ERROR_SELECT_3(stat_all, stat_gamr, stat_dgamrbxi);
b0_val = xeps * b0_val / beps;
b0_err = fabs(xeps / beps) * b0_err + 4.0 * GSL_DBL_EPSILON * fabs(b0_val);
dchu_val = sum.val + a0_val - b0_val;
dchu_err = sum.err + a0_err + b0_err
+ 2.0 * GSL_DBL_EPSILON * (fabs(sum.val) + fabs(a0_val) + fabs(b0_val));
for(i=1; i<2000; i++) {
double xi = istrt + i;
double xi1 = istrt + i - 1;
double a0_multiplier = (a+xi1)*x/((b+xi1)*xi);
double b0_multiplier = (a+xi1-beps)*x/((bint+xi1)*(xi-beps));
a0_val *= a0_multiplier;
a0_err += fabs(a0_multiplier) * a0_err;
b0_val *= b0_multiplier;
b0_err += fabs(b0_multiplier) * b0_err;
t_val = a0_val - b0_val;
t_err = a0_err + b0_err;
dchu_val += t_val;
dchu_err += t_err;
if(!gsl_finite(t_val) || fabs(t_val) < EPS*fabs(dchu_val)) break;
}
result->val = dchu_val;
result->err = 2.0 * dchu_err;
result->err += 2.0 * fabs(t_val);
result->err += 4.0 * GSL_DBL_EPSILON * (i+2.0) * fabs(dchu_val);
result->err *= 2.0; /* FIXME: fudge factor */
if(i >= 2000) {
GSL_ERROR ("error", GSL_EMAXITER);
}
else {
return stat_all;
}
}
static
int
hyperg_U_infinite_sum_improved(int N, double a, double bint, double b, double beps, double x, double xeps, gsl_sf_result sum,
gsl_sf_result * result)
{
const double EPS = 2.0 * GSL_DBL_EPSILON; /* EPS = D1MACH(3) */
const double lnx = log(x);
int istrt = ( N < 1 ? 1-N : 0 );
double xi = istrt;
gsl_sf_result gamr;
gsl_sf_result powx;
int stat_gamr = gsl_sf_gammainv_e(1.0+a-b, &gamr);
int stat_powx = gsl_sf_pow_int_e(x, istrt, &powx);
double sarg = beps*M_PI;
double sfact = ( sarg != 0.0 ? sarg/sin(sarg) : 1.0 );
double factor_val = sfact * ( GSL_IS_ODD(N) ? -1.0 : 1.0 ) * gamr.val * powx.val;
double factor_err = fabs(gamr.val) * powx.err + fabs(powx.val) * gamr.err
+ 2.0 * GSL_DBL_EPSILON * fabs(factor_val);
gsl_sf_result pochai;
gsl_sf_result gamri1;
gsl_sf_result gamrni;
int stat_pochai = gsl_sf_poch_e(a, xi, &pochai);
int stat_gamri1 = gsl_sf_gammainv_e(xi + 1.0, &gamri1);
int stat_gamrni = gsl_sf_gammainv_e(bint + xi, &gamrni);
int stat_gam123 = GSL_ERROR_SELECT_3(stat_gamr, stat_gamri1, stat_gamrni);
int stat_gamall = GSL_ERROR_SELECT_3(stat_gam123, stat_pochai, stat_powx);
gsl_sf_result pochaxibeps;
gsl_sf_result gamrxi1beps;
int stat_pochaxibeps = gsl_sf_poch_e(a, xi-beps, &pochaxibeps);
int stat_gamrxi1beps = gsl_sf_gammainv_e(xi + 1.0 - beps, &gamrxi1beps);
int stat_all = GSL_ERROR_SELECT_3(stat_gamall, stat_pochaxibeps, stat_gamrxi1beps);
double b0_val = factor_val * pochaxibeps.val * gamrni.val * gamrxi1beps.val;
double b0_err = fabs(factor_val * pochaxibeps.val * gamrni.val) * gamrxi1beps.err
+ fabs(factor_val * pochaxibeps.val * gamrxi1beps.val) * gamrni.err
+ fabs(factor_val * gamrni.val * gamrxi1beps.val) * pochaxibeps.err
+ fabs(pochaxibeps.val * gamrni.val * gamrxi1beps.val) * factor_err
+ 2.0 * GSL_DBL_EPSILON * fabs(b0_val);
/*
C X**(-BEPS) IS CLOSE TO 1.0D0, SO WE MUST BE
C CAREFUL IN EVALUATING THE DIFFERENCES.
*/
int i;
gsl_sf_result pch1ai;
gsl_sf_result pch1i;
gsl_sf_result poch1bxibeps;
int stat_pch1ai = gsl_sf_pochrel_e(a + xi, -beps, &pch1ai);
int stat_pch1i = gsl_sf_pochrel_e(xi + 1.0 - beps, beps, &pch1i);
int stat_poch1bxibeps = gsl_sf_pochrel_e(b+xi, -beps, &poch1bxibeps);
double c0_t1_val = beps*pch1ai.val*pch1i.val;
double c0_t1_err = fabs(beps) * fabs(pch1ai.val) * pch1i.err
+ fabs(beps) * fabs(pch1i.val) * pch1ai.err
+ 2.0 * GSL_DBL_EPSILON * fabs(c0_t1_val);
double c0_t2_val = -poch1bxibeps.val + pch1ai.val - pch1i.val + c0_t1_val;
double c0_t2_err = poch1bxibeps.err + pch1ai.err + pch1i.err + c0_t1_err
+ 2.0 * GSL_DBL_EPSILON * fabs(c0_t2_val);
double c0_val = factor_val * pochai.val * gamrni.val * gamri1.val * c0_t2_val;
double c0_err = fabs(factor_val * pochai.val * gamrni.val * gamri1.val) * c0_t2_err
+ fabs(factor_val * pochai.val * gamrni.val * c0_t2_val) * gamri1.err
+ fabs(factor_val * pochai.val * gamri1.val * c0_t2_val) * gamrni.err
+ fabs(factor_val * gamrni.val * gamri1.val * c0_t2_val) * pochai.err
+ fabs(pochai.val * gamrni.val * gamri1.val * c0_t2_val) * factor_err
+ 2.0 * GSL_DBL_EPSILON * fabs(c0_val);
/*
C XEPS1 = (1.0 - X**(-BEPS))/BEPS = (X**(-BEPS) - 1.0)/(-BEPS)
*/
gsl_sf_result dexprl;
int stat_dexprl = gsl_sf_exprel_e(-beps*lnx, &dexprl);
double xeps1_val = lnx * dexprl.val;
double xeps1_err = 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(beps*lnx)) * fabs(dexprl.val)
+ fabs(lnx) * dexprl.err
+ 2.0 * GSL_DBL_EPSILON * fabs(xeps1_val);
double dchu_val = sum.val + c0_val + xeps1_val*b0_val;
double dchu_err = sum.err + c0_err
+ fabs(xeps1_val)*b0_err + xeps1_err * fabs(b0_val)
+ fabs(b0_val*lnx)*dexprl.err
+ 2.0 * GSL_DBL_EPSILON * (fabs(sum.val) + fabs(c0_val) + fabs(xeps1_val*b0_val));
double xn = N;
double t_val;
double t_err;
stat_all = GSL_ERROR_SELECT_5(stat_all, stat_dexprl, stat_poch1bxibeps, stat_pch1i, stat_pch1ai);
for(i=1; i<2000; i++) {
const double xi = istrt + i;
const double xi1 = istrt + i - 1;
const double tmp = (a-1.0)*(xn+2.0*xi-1.0) + xi*(xi-beps);
const double b0_multiplier = (a+xi1-beps)*x/((xn+xi1)*(xi-beps));
const double c0_multiplier_1 = (a+xi1)*x/((b+xi1)*xi);
const double c0_multiplier_2 = tmp / (xi*(b+xi1)*(a+xi1-beps));
b0_val *= b0_multiplier;
b0_err += fabs(b0_multiplier) * b0_err + fabs(b0_val) * 8.0 * 2.0 * GSL_DBL_EPSILON;
c0_val = c0_multiplier_1 * c0_val - c0_multiplier_2 * b0_val;
c0_err = fabs(c0_multiplier_1) * c0_err
+ fabs(c0_multiplier_2) * b0_err
+ fabs(c0_val) * 8.0 * 2.0 * GSL_DBL_EPSILON
+ fabs(b0_val * c0_multiplier_2) * 16.0 * 2.0 * GSL_DBL_EPSILON;
t_val = c0_val + xeps1_val*b0_val;
t_err = c0_err + fabs(xeps1_val)*b0_err;
t_err += fabs(b0_val*lnx) * dexprl.err;
t_err += fabs(b0_val)*xeps1_err;
dchu_val += t_val;
dchu_err += t_err;
if(fabs(t_val) < EPS*fabs(dchu_val)) break;
}
result->val = dchu_val;
result->err = 2.0 * dchu_err;
result->err += 2.0 * fabs(t_val);
result->err += 4.0 * GSL_DBL_EPSILON * (i+2.0) * fabs(dchu_val);
result->err *= 2.0; /* FIXME: fudge factor */
if(i >= 2000) {
GSL_ERROR ("error", GSL_EMAXITER);
}
else {
return stat_all;
}
}
/* Based on SLATEC DCHU() [W. Fullerton]
* Assumes x > 0.
* This is just a series summation method, and
* it is not good for large a.
*
* I patched up the window for 1+a-b near zero. [GJ]
*/
static
int
hyperg_U_series(const double a, const double b, const double x, gsl_sf_result * result)
{
const double SQRT_EPS = M_SQRT2 * GSL_SQRT_DBL_EPSILON;
double bint = ( b < 0.0 ? ceil(b-0.5) : floor(b+0.5) );
double beps = b - bint;
double a_beps = a - beps;
double r_a_beps = floor(a_beps + 0.5);
double a_beps_int = ( fabs(a_beps - r_a_beps) < INT_THRESHOLD );
/* double a_b_1 = a-b+1;
double r_a_b_1 = floor(a_b_1+0.5);
double r_a_b_1_int = (fabs(a_b_1-r_a_b_1)< INT_THRESHOLD);
Check for (a-beps) being a member of -N; N being 0,1,... */
if (a_beps_int && a_beps <= 0)
{ beps=beps - 1 + floor(a_beps);bint=bint + 1 - floor(a_beps);
}
if(fabs(1.0 + a - b) < SQRT_EPS) {
/* Original Comment: ALGORITHM IS BAD WHEN 1+A-B IS NEAR ZERO FOR SMALL X
*/
/* We can however do the following:
* U(a,b,x) = U(a,a+1,x) when 1+a-b=0
* and U(a,a+1,x) = x^(-a).
*/
double lnr = -a * log(x);
int stat_e = gsl_sf_exp_e(lnr, result);
result->err += 2.0 * SQRT_EPS * fabs(result->val);
return stat_e;
}
else {
int N = (int) bint;
double lnx = log(x);
double xeps = exp(-beps*lnx);
/* Evaluate finite sum.
*/
gsl_sf_result sum;
int stat_sum = hyperg_U_finite_sum(N, a, b, x, xeps, &sum);
int stat_inf;
/* Evaluate infinite sum. */
if(fabs(xeps-1.0) > 0.5 ) {
stat_inf = hyperg_U_infinite_sum_stable(N, a, bint, b, beps, x, xeps, sum, result);
} else if (1+a-b < 0 && 1+a-b==floor(1+a-b) && beps != 0) {
stat_inf = hyperg_U_infinite_sum_simple(N, a, bint, b, beps, x, xeps, sum, result);
} else {
stat_inf = hyperg_U_infinite_sum_improved(N, a, bint, b, beps, x, xeps, sum, result);
}
return GSL_ERROR_SELECT_2(stat_sum, stat_inf);
}
}
/* Assumes b > 0 and x > 0.
*/
static
int
hyperg_U_small_ab(const double a, const double b, const double x, gsl_sf_result * result)
{
if(a == -1.0) {
/* U(-1,c+1,x) = Laguerre[c,0,x] = -b + x
*/
result->val = -b + x;
result->err = 2.0 * GSL_DBL_EPSILON * (fabs(b) + fabs(x));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else if(a == 0.0) {
/* U(0,c+1,x) = Laguerre[c,0,x] = 1
*/
result->val = 1.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else if(ASYMP_EVAL_OK(a,b,x)) {
double p = pow(x, -a);
gsl_sf_result asymp;
int stat_asymp = hyperg_zaU_asymp(a, b, x, &asymp);
result->val = asymp.val * p;
result->err = asymp.err * p;
result->err += fabs(asymp.val) * GSL_DBL_EPSILON * fabs(a) * p;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return stat_asymp;
}
else {
return hyperg_U_series(a, b, x, result);
}
}
/* Assumes b > 0 and x > 0.
*/
static
int
hyperg_U_small_a_bgt0(const double a, const double b, const double x,
gsl_sf_result * result,
double * ln_multiplier
)
{
if(a == 0.0) {
result->val = 1.0;
result->err = 0.0;
*ln_multiplier = 0.0;
return GSL_SUCCESS;
}
else if( (b > 5000.0 && x < 0.90 * fabs(b))
|| (b > 500.0 && x < 0.50 * fabs(b))
) {
int stat = gsl_sf_hyperg_U_large_b_e(a, b, x, result, ln_multiplier);
if(stat == GSL_EOVRFLW)
return GSL_SUCCESS;
else
return stat;
}
else if(b > 15.0) {
/* Recurse up from b near 1.
*/
double eps = b - floor(b);
double b0 = 1.0 + eps;
gsl_sf_result r_Ubm1;
gsl_sf_result r_Ub;
int stat_0 = hyperg_U_small_ab(a, b0, x, &r_Ubm1);
int stat_1 = hyperg_U_small_ab(a, b0+1.0, x, &r_Ub);
double Ubm1 = r_Ubm1.val;
double Ub = r_Ub.val;
double Ubp1;
double bp;
for(bp = b0+1.0; bp<b-0.1; bp += 1.0) {
Ubp1 = ((1.0+a-bp)*Ubm1 + (bp+x-1.0)*Ub)/x;
Ubm1 = Ub;
Ub = Ubp1;
}
result->val = Ub;
result->err = (fabs(r_Ubm1.err/r_Ubm1.val) + fabs(r_Ub.err/r_Ub.val)) * fabs(Ub);
result->err += 2.0 * GSL_DBL_EPSILON * (fabs(b-b0)+1.0) * fabs(Ub);
*ln_multiplier = 0.0;
return GSL_ERROR_SELECT_2(stat_0, stat_1);
}
else {
*ln_multiplier = 0.0;
return hyperg_U_small_ab(a, b, x, result);
}
}
/* We use this to keep track of large
* dynamic ranges in the recursions.
* This can be important because sometimes
* we want to calculate a very large and
* a very small number and the answer is
* the product, of order 1. This happens,
* for instance, when we apply a Kummer
* transform to make b positive and
* both x and b are large.
*/
#define RESCALE_2(u0,u1,factor,count) \
do { \
double au0 = fabs(u0); \
if(au0 > factor) { \
u0 /= factor; \
u1 /= factor; \
count++; \
} \
else if(au0 < 1.0/factor) { \
u0 *= factor; \
u1 *= factor; \
count--; \
} \
} while (0)
/* Specialization to b >= 1, for integer parameters.
* Assumes x > 0.
*/
static
int
hyperg_U_int_bge1(const int a, const int b, const double x,
gsl_sf_result_e10 * result)
{
if(a == 0) {
result->val = 1.0;
result->err = 0.0;
result->e10 = 0;
return GSL_SUCCESS;
}
else if(a == -1) {
result->val = -b + x;
result->err = 2.0 * GSL_DBL_EPSILON * (fabs(b) + fabs(x));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
result->e10 = 0;
return GSL_SUCCESS;
}
else if(b == a + 1) {
/* U(a,a+1,x) = x^(-a)
*/
return gsl_sf_exp_e10_e(-a*log(x), result);
}
else if(ASYMP_EVAL_OK(a,b,x)) {
const double ln_pre_val = -a*log(x);
const double ln_pre_err = 2.0 * GSL_DBL_EPSILON * fabs(ln_pre_val);
gsl_sf_result asymp;
int stat_asymp = hyperg_zaU_asymp(a, b, x, &asymp);
int stat_e = gsl_sf_exp_mult_err_e10_e(ln_pre_val, ln_pre_err,
asymp.val, asymp.err,
result);
return GSL_ERROR_SELECT_2(stat_e, stat_asymp);
}
else if(SERIES_EVAL_OK(a,b,x) && 1 + a - b > 0) {
gsl_sf_result ser;
const int stat_ser = hyperg_U_series(a, b, x, &ser);
result->val = ser.val;
result->err = ser.err;
result->e10 = 0;
return stat_ser;
}
else if(a < 0) {
/* Recurse backward from a = -1,0.
*/
int scale_count = 0;
const double scale_factor = GSL_SQRT_DBL_MAX;
gsl_sf_result lnm;
gsl_sf_result y;
double lnscale;
double Uap1 = 1.0; /* U(0,b,x) */
double Ua = -b + x; /* U(-1,b,x) */
double Uam1;
int ap;
for(ap=-1; ap>a; ap--) {
Uam1 = ap*(b-ap-1.0)*Uap1 + (x+2.0*ap-b)*Ua;
Uap1 = Ua;
Ua = Uam1;
RESCALE_2(Ua,Uap1,scale_factor,scale_count);
}
lnscale = log(scale_factor);
lnm.val = scale_count*lnscale;
lnm.err = 2.0 * GSL_DBL_EPSILON * fabs(lnm.val);
y.val = Ua;
y.err = 4.0 * GSL_DBL_EPSILON * (fabs(a)+1.0) * fabs(Ua);
return gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result);
}
else if(b >= 2.0*a + x) {
/* Recurse forward from a = 0,1.
*/
int scale_count = 0;
const double scale_factor = GSL_SQRT_DBL_MAX;
gsl_sf_result r_Ua;
gsl_sf_result lnm;
gsl_sf_result y;
double lnscale;
double lm;
int stat_1 = hyperg_U_small_a_bgt0(1.0, b, x, &r_Ua, &lm); /* U(1,b,x) */
int stat_e;
double Uam1 = 1.0; /* U(0,b,x) */
double Ua = r_Ua.val;
double Uap1;
int ap;
Uam1 *= exp(-lm);
for(ap=1; ap<a; ap++) {
Uap1 = -(Uam1 + (b-2.0*ap-x)*Ua)/(ap*(1.0+ap-b));
Uam1 = Ua;
Ua = Uap1;
RESCALE_2(Ua,Uam1,scale_factor,scale_count);
}
lnscale = log(scale_factor);
lnm.val = lm + scale_count * lnscale;
lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm) + fabs(scale_count*lnscale));
y.val = Ua;
y.err = fabs(r_Ua.err/r_Ua.val) * fabs(Ua);
y.err += 2.0 * GSL_DBL_EPSILON * (fabs(a) + 1.0) * fabs(Ua);
stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result);
return GSL_ERROR_SELECT_2(stat_e, stat_1);
}
else {
if(b <= x) {
/* Recurse backward either to the b=a+1 line
* or to a=0, whichever we hit.
*/
const double scale_factor = GSL_SQRT_DBL_MAX;
int scale_count = 0;
int stat_CF1;
double ru;
int CF1_count;
int a_target;
double lnU_target;
double Ua;
double Uap1;
double Uam1;
int ap;
if(b < a + 1) {
a_target = b-1;
lnU_target = -a_target*log(x);
}
else {
a_target = 0;
lnU_target = 0.0;
}
stat_CF1 = hyperg_U_CF1(a, b, 0, x, &ru, &CF1_count);
Ua = 1.0;
Uap1 = ru/a * Ua;
for(ap=a; ap>a_target; ap--) {
Uam1 = -((b-2.0*ap-x)*Ua + ap*(1.0+ap-b)*Uap1);
Uap1 = Ua;
Ua = Uam1;
RESCALE_2(Ua,Uap1,scale_factor,scale_count);
}
if(Ua == 0.0) {
result->val = 0.0;
result->err = 0.0;
result->e10 = 0;
GSL_ERROR ("error", GSL_EZERODIV);
}
else {
double lnscl = -scale_count*log(scale_factor);
double lnpre_val = lnU_target + lnscl;
double lnpre_err = 2.0 * GSL_DBL_EPSILON * (fabs(lnU_target) + fabs(lnscl));
double oUa_err = 2.0 * (fabs(a_target-a) + CF1_count + 1.0) * GSL_DBL_EPSILON * fabs(1.0/Ua);
int stat_e = gsl_sf_exp_mult_err_e10_e(lnpre_val, lnpre_err,
1.0/Ua, oUa_err,
result);
return GSL_ERROR_SELECT_2(stat_e, stat_CF1);
}
}
else {
/* Recurse backward to near the b=2a+x line, then
* determine normalization by either direct evaluation
* or by a forward recursion. The direct evaluation
* is needed when x is small (which is precisely
* when it is easy to do).
*/
const double scale_factor = GSL_SQRT_DBL_MAX;
int scale_count_for = 0;
int scale_count_bck = 0;
int a0 = 1;
int a1 = a0 + ceil(0.5*(b-x) - a0);
double Ua1_bck_val;
double Ua1_bck_err;
double Ua1_for_val;
double Ua1_for_err;
int stat_for;
int stat_bck;
gsl_sf_result lm_for;
{
/* Recurse back to determine U(a1,b), sans normalization.
*/
double ru;
int CF1_count;
int stat_CF1 = hyperg_U_CF1(a, b, 0, x, &ru, &CF1_count);
double Ua = 1.0;
double Uap1 = ru/a * Ua;
double Uam1;
int ap;
for(ap=a; ap>a1; ap--) {
Uam1 = -((b-2.0*ap-x)*Ua + ap*(1.0+ap-b)*Uap1);
Uap1 = Ua;
Ua = Uam1;
RESCALE_2(Ua,Uap1,scale_factor,scale_count_bck);
}
Ua1_bck_val = Ua;
Ua1_bck_err = 2.0 * GSL_DBL_EPSILON * (fabs(a1-a)+CF1_count+1.0) * fabs(Ua);
stat_bck = stat_CF1;
}
if(b == 2*a1 && a1 > 1) {
/* This can happen when x is small, which is
* precisely when we need to be careful with
* this evaluation.
*/
hyperg_lnU_beq2a((double)a1, x, &lm_for);
Ua1_for_val = 1.0;
Ua1_for_err = 0.0;
stat_for = GSL_SUCCESS;
}
else if(b == 2*a1 - 1 && a1 > 1) {
/* Similar to the above. Happens when x is small.
* Use
* U(a,2a-1) = (x U(a,2a) - U(a-1,2(a-1))) / (2a - 2)
*/
gsl_sf_result lnU00, lnU12;
gsl_sf_result U00, U12;
hyperg_lnU_beq2a(a1-1.0, x, &lnU00);
hyperg_lnU_beq2a(a1, x, &lnU12);
if(lnU00.val > lnU12.val) {
lm_for.val = lnU00.val;
lm_for.err = lnU00.err;
U00.val = 1.0;
U00.err = 0.0;
gsl_sf_exp_err_e(lnU12.val - lm_for.val, lnU12.err + lm_for.err, &U12);
}
else {
lm_for.val = lnU12.val;
lm_for.err = lnU12.err;
U12.val = 1.0;
U12.err = 0.0;
gsl_sf_exp_err_e(lnU00.val - lm_for.val, lnU00.err + lm_for.err, &U00);
}
Ua1_for_val = (x * U12.val - U00.val) / (2.0*a1 - 2.0);
Ua1_for_err = (fabs(x)*U12.err + U00.err) / fabs(2.0*a1 - 2.0);
Ua1_for_err += 2.0 * GSL_DBL_EPSILON * fabs(Ua1_for_val);
stat_for = GSL_SUCCESS;
}
else {
/* Recurse forward to determine U(a1,b) with
* absolute normalization.
*/
gsl_sf_result r_Ua;
double Uam1 = 1.0; /* U(a0-1,b,x) = U(0,b,x) */
double Ua;
double Uap1;
int ap;
double lm_for_local;
stat_for = hyperg_U_small_a_bgt0(a0, b, x, &r_Ua, &lm_for_local); /* U(1,b,x) */
Ua = r_Ua.val;
Uam1 *= exp(-lm_for_local);
lm_for.val = lm_for_local;
lm_for.err = 0.0;
for(ap=a0; ap<a1; ap++) {
Uap1 = -(Uam1 + (b-2.0*ap-x)*Ua)/(ap*(1.0+ap-b));
Uam1 = Ua;
Ua = Uap1;
RESCALE_2(Ua,Uam1,scale_factor,scale_count_for);
}
Ua1_for_val = Ua;
Ua1_for_err = fabs(Ua) * fabs(r_Ua.err/r_Ua.val);
Ua1_for_err += 2.0 * GSL_DBL_EPSILON * (fabs(a1-a0)+1.0) * fabs(Ua1_for_val);
}
/* Now do the matching to produce the final result.
*/
if(Ua1_bck_val == 0.0) {
result->val = 0.0;
result->err = 0.0;
result->e10 = 0;
GSL_ERROR ("error", GSL_EZERODIV);
}
else if(Ua1_for_val == 0.0) {
/* Should never happen. */
UNDERFLOW_ERROR_E10(result);
}
else {
double lns = (scale_count_for - scale_count_bck)*log(scale_factor);
double ln_for_val = log(fabs(Ua1_for_val));
double ln_for_err = GSL_DBL_EPSILON + fabs(Ua1_for_err/Ua1_for_val);
double ln_bck_val = log(fabs(Ua1_bck_val));
double ln_bck_err = GSL_DBL_EPSILON + fabs(Ua1_bck_err/Ua1_bck_val);
double lnr_val = lm_for.val + ln_for_val - ln_bck_val + lns;
double lnr_err = lm_for.err + ln_for_err + ln_bck_err
+ 2.0 * GSL_DBL_EPSILON * (fabs(lm_for.val) + fabs(ln_for_val) + fabs(ln_bck_val) + fabs(lns));
double sgn = GSL_SIGN(Ua1_for_val) * GSL_SIGN(Ua1_bck_val);
int stat_e = gsl_sf_exp_err_e10_e(lnr_val, lnr_err, result);
result->val *= sgn;
return GSL_ERROR_SELECT_3(stat_e, stat_bck, stat_for);
}
}
}
}
/* Handle b >= 1 for generic a,b values.
*/
static
int
hyperg_U_bge1(const double a, const double b, const double x,
gsl_sf_result_e10 * result)
{
const double rinta = floor(a+0.5);
const int a_neg_integer = (a < 0.0 && fabs(a - rinta) < INT_THRESHOLD);
if(a == 0.0) {
result->val = 1.0;
result->err = 0.0;
result->e10 = 0;
return GSL_SUCCESS;
}
else if(a_neg_integer && fabs(rinta) < INT_MAX) {
/* U(-n,b,x) = (-1)^n n! Laguerre[n,b-1,x]
*/
const int n = -(int)rinta;
const double sgn = (GSL_IS_ODD(n) ? -1.0 : 1.0);
gsl_sf_result lnfact;
gsl_sf_result L;
const int stat_L = gsl_sf_laguerre_n_e(n, b-1.0, x, &L);
gsl_sf_lnfact_e(n, &lnfact);
{
const int stat_e = gsl_sf_exp_mult_err_e10_e(lnfact.val, lnfact.err,
sgn*L.val, L.err,
result);
return GSL_ERROR_SELECT_2(stat_e, stat_L);
}
}
else if(ASYMP_EVAL_OK(a,b,x)) {
const double ln_pre_val = -a*log(x);
const double ln_pre_err = 2.0 * GSL_DBL_EPSILON * fabs(ln_pre_val);
gsl_sf_result asymp;
int stat_asymp = hyperg_zaU_asymp(a, b, x, &asymp);
int stat_e = gsl_sf_exp_mult_err_e10_e(ln_pre_val, ln_pre_err,
asymp.val, asymp.err,
result);
return GSL_ERROR_SELECT_2(stat_e, stat_asymp);
}
else if(fabs(a) <= 1.0) {
gsl_sf_result rU;
double ln_multiplier;
int stat_U = hyperg_U_small_a_bgt0(a, b, x, &rU, &ln_multiplier);
int stat_e = gsl_sf_exp_mult_err_e10_e(ln_multiplier, 2.0*GSL_DBL_EPSILON*fabs(ln_multiplier), rU.val, rU.err, result);
return GSL_ERROR_SELECT_2(stat_U, stat_e);
}
else if(SERIES_EVAL_OK(a,b,x)) {
gsl_sf_result ser;
const int stat_ser = hyperg_U_series(a, b, x, &ser);
result->val = ser.val;
result->err = ser.err;
result->e10 = 0;
return stat_ser;
}
else if(a < 0.0) {
/* Recurse backward on a and then upward on b.
*/
const double scale_factor = GSL_SQRT_DBL_MAX;
const double a0 = a - floor(a) - 1.0;
const double b0 = b - floor(b) + 1.0;
int scale_count = 0;
double lm_0, lm_1;
double lm_max;
gsl_sf_result r_Uap1;
gsl_sf_result r_Ua;
int stat_0 = hyperg_U_small_a_bgt0(a0+1.0, b0, x, &r_Uap1, &lm_0);
int stat_1 = hyperg_U_small_a_bgt0(a0, b0, x, &r_Ua, &lm_1);
int stat_e;
double Uap1 = r_Uap1.val;
double Ua = r_Ua.val;
double Uam1;
double ap;
lm_max = GSL_MAX(lm_0, lm_1);
Uap1 *= exp(lm_0-lm_max);
Ua *= exp(lm_1-lm_max);
/* Downward recursion on a.
*/
for(ap=a0; ap>a+0.1; ap -= 1.0) {
Uam1 = ap*(b0-ap-1.0)*Uap1 + (x+2.0*ap-b0)*Ua;
Uap1 = Ua;
Ua = Uam1;
RESCALE_2(Ua,Uap1,scale_factor,scale_count);
}
if(b < 2.0) {
/* b == b0, so no recursion necessary
*/
const double lnscale = log(scale_factor);
gsl_sf_result lnm;
gsl_sf_result y;
lnm.val = lm_max + scale_count * lnscale;
lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm_max) + scale_count * fabs(lnscale));
y.val = Ua;
y.err = fabs(r_Uap1.err/r_Uap1.val) * fabs(Ua);
y.err += fabs(r_Ua.err/r_Ua.val) * fabs(Ua);
y.err += 2.0 * GSL_DBL_EPSILON * (fabs(a-a0) + 1.0) * fabs(Ua);
y.err *= fabs(lm_0-lm_max) + 1.0;
y.err *= fabs(lm_1-lm_max) + 1.0;
stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result);
}
else {
/* Upward recursion on b.
*/
const double err_mult = fabs(b-b0) + fabs(a-a0) + 1.0;
const double lnscale = log(scale_factor);
gsl_sf_result lnm;
gsl_sf_result y;
double Ubm1 = Ua; /* U(a,b0) */
double Ub = (a*(b0-a-1.0)*Uap1 + (a+x)*Ua)/x; /* U(a,b0+1) */
double Ubp1;
double bp;
for(bp=b0+1.0; bp<b-0.1; bp += 1.0) {
Ubp1 = ((1.0+a-bp)*Ubm1 + (bp+x-1.0)*Ub)/x;
Ubm1 = Ub;
Ub = Ubp1;
RESCALE_2(Ub,Ubm1,scale_factor,scale_count);
}
lnm.val = lm_max + scale_count * lnscale;
lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm_max) + fabs(scale_count * lnscale));
y.val = Ub;
y.err = 2.0 * err_mult * fabs(r_Uap1.err/r_Uap1.val) * fabs(Ub);
y.err += 2.0 * err_mult * fabs(r_Ua.err/r_Ua.val) * fabs(Ub);
y.err += 2.0 * GSL_DBL_EPSILON * err_mult * fabs(Ub);
y.err *= fabs(lm_0-lm_max) + 1.0;
y.err *= fabs(lm_1-lm_max) + 1.0;
stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result);
}
return GSL_ERROR_SELECT_3(stat_e, stat_0, stat_1);
}
else if(b >= 2*a + x) {
/* Recurse forward from a near zero.
* Note that we cannot cross the singularity at
* the line b=a+1, because the only way we could
* be in that little wedge is if a < 1. But we
* have already dealt with the small a case.
*/
int scale_count = 0;
const double a0 = a - floor(a);
const double scale_factor = GSL_SQRT_DBL_MAX;
double lnscale;
double lm_0, lm_1, lm_max;
gsl_sf_result r_Uam1;
gsl_sf_result r_Ua;
int stat_0 = hyperg_U_small_a_bgt0(a0-1.0, b, x, &r_Uam1, &lm_0);
int stat_1 = hyperg_U_small_a_bgt0(a0, b, x, &r_Ua, &lm_1);
int stat_e;
gsl_sf_result lnm;
gsl_sf_result y;
double Uam1 = r_Uam1.val;
double Ua = r_Ua.val;
double Uap1;
double ap;
lm_max = GSL_MAX(lm_0, lm_1);
Uam1 *= exp(lm_0-lm_max);
Ua *= exp(lm_1-lm_max);
for(ap=a0; ap<a-0.1; ap += 1.0) {
Uap1 = -(Uam1 + (b-2.0*ap-x)*Ua)/(ap*(1.0+ap-b));
Uam1 = Ua;
Ua = Uap1;
RESCALE_2(Ua,Uam1,scale_factor,scale_count);
}
lnscale = log(scale_factor);
lnm.val = lm_max + scale_count * lnscale;
lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm_max) + fabs(scale_count * lnscale));
y.val = Ua;
y.err = fabs(r_Uam1.err/r_Uam1.val) * fabs(Ua);
y.err += fabs(r_Ua.err/r_Ua.val) * fabs(Ua);
y.err += 2.0 * GSL_DBL_EPSILON * (fabs(a-a0) + 1.0) * fabs(Ua);
y.err *= fabs(lm_0-lm_max) + 1.0;
y.err *= fabs(lm_1-lm_max) + 1.0;
stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result);
return GSL_ERROR_SELECT_3(stat_e, stat_0, stat_1);
}
else {
if(b <= x) {
/* Recurse backward to a near zero.
*/
const double a0 = a - floor(a);
const double scale_factor = GSL_SQRT_DBL_MAX;
int scale_count = 0;
gsl_sf_result lnm;
gsl_sf_result y;
double lnscale;
double lm_0;
double Uap1;
double Ua;
double Uam1;
gsl_sf_result U0;
double ap;
double ru;
double r;
int CF1_count;
int stat_CF1 = hyperg_U_CF1(a, b, 0, x, &ru, &CF1_count);
int stat_U0;
int stat_e;
r = ru/a;
Ua = GSL_SQRT_DBL_MIN;
Uap1 = r * Ua;
for(ap=a; ap>a0+0.1; ap -= 1.0) {
Uam1 = -((b-2.0*ap-x)*Ua + ap*(1.0+ap-b)*Uap1);
Uap1 = Ua;
Ua = Uam1;
RESCALE_2(Ua,Uap1,scale_factor,scale_count);
}
stat_U0 = hyperg_U_small_a_bgt0(a0, b, x, &U0, &lm_0);
lnscale = log(scale_factor);
lnm.val = lm_0 - scale_count * lnscale;
lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm_0) + fabs(scale_count * lnscale));
y.val = GSL_SQRT_DBL_MIN*(U0.val/Ua);
y.err = GSL_SQRT_DBL_MIN*(U0.err/fabs(Ua));
y.err += 2.0 * GSL_DBL_EPSILON * (fabs(a0-a) + CF1_count + 1.0) * fabs(y.val);
stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result);
return GSL_ERROR_SELECT_3(stat_e, stat_U0, stat_CF1);
}
else {
/* Recurse backward to near the b=2a+x line, then
* forward from a near zero to get the normalization.
*/
int scale_count_for = 0;
int scale_count_bck = 0;
const double scale_factor = GSL_SQRT_DBL_MAX;
const double eps = a - floor(a);
const double a0 = ( eps == 0.0 ? 1.0 : eps );
const double a1 = a0 + ceil(0.5*(b-x) - a0);
gsl_sf_result lnm;
gsl_sf_result y;
double lm_for;
double lnscale;
double Ua1_bck;
double Ua1_for;
int stat_for;
int stat_bck;
int stat_e;
int CF1_count;
{
/* Recurse back to determine U(a1,b), sans normalization.
*/
double Uap1;
double Ua;
double Uam1;
double ap;
double ru;
double r;
int stat_CF1 = hyperg_U_CF1(a, b, 0, x, &ru, &CF1_count);
r = ru/a;
Ua = GSL_SQRT_DBL_MIN;
Uap1 = r * Ua;
for(ap=a; ap>a1+0.1; ap -= 1.0) {
Uam1 = -((b-2.0*ap-x)*Ua + ap*(1.0+ap-b)*Uap1);
Uap1 = Ua;
Ua = Uam1;
RESCALE_2(Ua,Uap1,scale_factor,scale_count_bck);
}
Ua1_bck = Ua;
stat_bck = stat_CF1;
}
{
/* Recurse forward to determine U(a1,b) with
* absolute normalization.
*/
gsl_sf_result r_Uam1;
gsl_sf_result r_Ua;
double lm_0, lm_1;
int stat_0 = hyperg_U_small_a_bgt0(a0-1.0, b, x, &r_Uam1, &lm_0);
int stat_1 = hyperg_U_small_a_bgt0(a0, b, x, &r_Ua, &lm_1);
double Uam1 = r_Uam1.val;
double Ua = r_Ua.val;
double Uap1;
double ap;
lm_for = GSL_MAX(lm_0, lm_1);
Uam1 *= exp(lm_0 - lm_for);
Ua *= exp(lm_1 - lm_for);
for(ap=a0; ap<a1-0.1; ap += 1.0) {
Uap1 = -(Uam1 + (b-2.0*ap-x)*Ua)/(ap*(1.0+ap-b));
Uam1 = Ua;
Ua = Uap1;
RESCALE_2(Ua,Uam1,scale_factor,scale_count_for);
}
Ua1_for = Ua;
stat_for = GSL_ERROR_SELECT_2(stat_0, stat_1);
}
lnscale = log(scale_factor);
lnm.val = lm_for + (scale_count_for - scale_count_bck)*lnscale;
lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm_for) + fabs(scale_count_for - scale_count_bck)*fabs(lnscale));
y.val = GSL_SQRT_DBL_MIN*Ua1_for/Ua1_bck;
y.err = 2.0 * GSL_DBL_EPSILON * (fabs(a-a0) + CF1_count + 1.0) * fabs(y.val);
stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result);
return GSL_ERROR_SELECT_3(stat_e, stat_bck, stat_for);
}
}
}
/* Handle U(a,b,x) using AMS 13.1.3 when x = 0. This requires b<1 to
avoid a singularity from the term z^(1-b)
U(a,b,z=0) = (pi/sin(pi*b)) * 1/(gamma(1+a-b)*gamma(b))
There are a lot of special limiting cases here
b = 0, positive integer, negative integer
1+a-b = 0, negative integer
I haven't implemented these yet - BJG
*/
static int
hyperg_U_origin (const double a, const double b, gsl_sf_result_e10 * result)
{
gsl_sf_result r1, r2;
int stat_1 = gsl_sf_gammainv_e(1+a-b,&r1);
int stat_2 = gsl_sf_gammainv_e(b,&r2);
double factor = M_PI / sin(M_PI*b);
result->val = factor * r1.val * r2.val;
result->err = fabs(factor) * (r1.err + r2.err);
result->e10 = 0;
return GSL_ERROR_SELECT_2(stat_1, stat_2);
}
static int
hyperg_U_int_origin (const int a, const int b, gsl_sf_result_e10 * result)
{
return hyperg_U_origin (a, b, result);
}
/* Calculate U(a,b,x) for x < 0
Abramowitz and Stegun formula 13.1.3
U(a,b,x) = (gamma(1-b)/gamma(1+a-b)) M(a,b,x)
- z^(1-b) (gamma(1-b)/gamma(a)) M(1+a-b,2-b,x)
can be transformed into
U(a,b,x) = poch(1+a-b,-a) M(a,b,x)
+ z^(1-b) poch(a,-(1+a-b)) M(1+a-b,2-b,x)
using the reflection formula 6.1.17 and the definition of
Poch(a,b)=gamma(a+b)/gamma(a). Our poch function already handles
the special cases of ratios of gamma functions with negative
integer argument.
Note that U(a,b,x) is complex in general for x<0 due to the term
x^(1-b), but is real when
1) b is an integer
4) a is zero or a negative integer so x^(1-b)/gamma(a) is zero.
For integer b U(a,b,x) is defined as the limit beta->b U(a,beta,x).
This makes the situation slightly more complicated.
*/
static int
hyperg_U_negx (const double a, const double b, const double x, gsl_sf_result_e10 * result)
{
gsl_sf_result r1, r2;
int stat_1, stat_2, status;
int a_int = (a == floor(a));
int b_int = (b == floor(b));
double T1 = 0, T1_err = 0, T2 = 0, T2_err = 0;
/* Compute the first term poch(1+a-b) M(a,b,x) */
if (b_int && b <= 0 && !(a_int && a <= 0 && a >= b))
{
/* Need to handle first term as
lim_{beta->b} poch(1+a-beta,-a) M(a,beta,x)
due to pole in M(a,b,x) for b == 0 or -ve integer
We skip this case when a is zero or a negative integer and
a>=b because the hypergeometric series terminates before any
singular terms
*/
/* FIXME: TO BE IMPLEMENTED ! */
result->val = GSL_NAN; result->err = GSL_NAN;
GSL_ERROR("limit case integer b <= 0 unimplemented", GSL_EUNIMPL);
}
else
{
stat_1 = gsl_sf_poch_e(1+a-b,-a,&r1);
status = stat_1;
if (r1.val != 0.0)
{
gsl_sf_result Mr1;
int stat_Mr1 = gsl_sf_hyperg_1F1_e (a, b, x, &Mr1);
status = GSL_ERROR_SELECT_2(status, stat_Mr1);
T1 = Mr1.val * r1.val;
T1_err = 2.0 * GSL_DBL_EPSILON * fabs(T1)
+ fabs(Mr1.err * r1.val) + fabs(Mr1.val * r1.err) ;
}
}
/* Compute the second term z^(1-b) poch(a,-(1+a-b)) M(1+a-b,2-b,x) */
if (b_int && b >= 2 && !(a_int && a <= (b - 2)))
{
/* Need to handle second term as a limit due to pole in
M(1+a-b,2-b,x).
We skip this case when a is integer and a <= b-2 because the
hypergeometric series terminates before any singular terms
*/
/* FIXME: TO BE IMPLEMENTED ! */
result->val = GSL_NAN; result->err = GSL_NAN;
GSL_ERROR("limit case integer b >= 2 unimplemented", GSL_EUNIMPL);
}
else
{
if (a_int && a <= 0 && (b >= 1))
{
r2.val = 0;
r2.err = 0;
}
else
{
stat_2 = gsl_sf_poch_e(a,-(1+a-b),&r2);
status = GSL_ERROR_SELECT_2(status, stat_2);
}
if (r2.val != 0.0)
{
gsl_sf_result Mr2;
int stat_Mr2 = gsl_sf_hyperg_1F1_e (1+a-b, 2-b, x, &Mr2);
T2 = Mr2.val * r2.val;
T2_err = 2.0 * GSL_DBL_EPSILON * fabs(T2)
+ fabs(Mr2.err * r2.val) + fabs(Mr2.val * r2.err);
status = GSL_ERROR_SELECT_2(status, stat_Mr2);
if (T2 != 0.0)
{
double x1mb = pow(x, 1-b);
T2 = x1mb * T2;
T2_err = fabs(x1mb) * T2_err;
}
}
}
result->val = (T1 + T2);
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + (T1_err + T2_err);
result->e10 = 0;
return status;
}
static int
hyperg_U_int_negx (const int a, const int b, const double x, gsl_sf_result_e10 * result)
{
/* Looking at the tests it seems that everything is handled correctly by hyperg_U_negx
except a<b<=0. The b=1 case seems strange since the poch(1+a-b,-a) should blow up.
In order to do no (little) harm I fix up only a<b<=0 using DLMF 13.2.11. These are the failing conditions
*/
if (a<b && b<=0)
{
gsl_sf_result_e10 r1;
double z21_z = pow(x, 1-b);
int status = hyperg_U_negx (1+a-b,2-b, x, &r1);
double res_tem=z21_z*r1.val;
double res_tem_err = fabs(z21_z)*r1.err;
result->val = res_tem;
result->err = res_tem_err;
return status;
}
else
{
return hyperg_U_negx (a, b, x, result);
}
}
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int
gsl_sf_hyperg_U_int_e10_e(const int a, const int b, const double x,
gsl_sf_result_e10 * result)
{
/* CHECK_POINTER(result) */
if(x == 0.0 && b >= 1) {
DOMAIN_ERROR_E10(result);
}
else if (x == 0.0) {
return hyperg_U_int_origin (a, b, result);
} else if (x < 0.0) {
return hyperg_U_int_negx (a, b, x, result);
}
else {
if(b >= 1) {
return hyperg_U_int_bge1(a, b, x, result);
}
else {
/* Use the reflection formula
* U(a,b,x) = x^(1-b) U(1+a-b,2-b,x)
*/
gsl_sf_result_e10 U;
double ln_x = log(x);
int ap = 1 + a - b;
int bp = 2 - b;
int stat_e;
int stat_U = hyperg_U_int_bge1(ap, bp, x, &U);
double ln_pre_val = (1.0-b)*ln_x;
double ln_pre_err = 2.0 * GSL_DBL_EPSILON * (fabs(b)+1.0) * fabs(ln_x);
ln_pre_err += 2.0 * GSL_DBL_EPSILON * fabs(1.0-b); /* error in log(x) */
stat_e = gsl_sf_exp_mult_err_e10_e(ln_pre_val + U.e10*M_LN10, ln_pre_err,
U.val, U.err,
result);
return GSL_ERROR_SELECT_2(stat_e, stat_U);
}
}
}
int
gsl_sf_hyperg_U_e10_e(const double a, const double b, const double x,
gsl_sf_result_e10 * result)
{
const double rinta = floor(a + 0.5);
const double rintb = floor(b + 0.5);
const int a_integer = ( fabs(a - rinta) < INT_THRESHOLD );
const int b_integer = ( fabs(b - rintb) < INT_THRESHOLD );
/* CHECK_POINTER(result) */
if(x == 0.0 && b >= 1) {
DOMAIN_ERROR_E10(result);
}
else if(a == 0.0) {
result->val = 1.0;
result->err = 0.0;
result->e10 = 0;
return GSL_SUCCESS;
}
else if (x == 0.0) {
return hyperg_U_origin (a, b, result);
}
else if(a_integer && b == a + 1)
/* This is DLMF 13.6.4 */
{
gsl_sf_result powx1N_1;
gsl_sf_pow_int_e(x, -a, &powx1N_1);
result->val = powx1N_1.val;
result->err = powx1N_1.err;
result->e10 = 0;
return GSL_SUCCESS;
}
else if(a_integer && b_integer) {
return gsl_sf_hyperg_U_int_e10_e(rinta, rintb, x, result);
}
else if (x < 0.0) {
return hyperg_U_negx (a, b, x, result);
}
else {
if(b >= 1.0) {
/* Use b >= 1 function.
*/
return hyperg_U_bge1(a, b, x, result);
}
else {
/* Use the reflection formula
* U(a,b,x) = x^(1-b) U(1+a-b,2-b,x)
*/
const double lnx = log(x);
const double ln_pre_val = (1.0-b)*lnx;
const double ln_pre_err = fabs(lnx) * 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(b));
const double ap = 1.0 + a - b;
const double bp = 2.0 - b;
gsl_sf_result_e10 U;
int stat_U = hyperg_U_bge1(ap, bp, x, &U);
int stat_e = gsl_sf_exp_mult_err_e10_e(ln_pre_val + U.e10*M_LN10, ln_pre_err,
U.val, U.err,
result);
return GSL_ERROR_SELECT_2(stat_e, stat_U);
}
}
}
int
gsl_sf_hyperg_U_int_e(const int a, const int b, const double x, gsl_sf_result * result)
{
gsl_sf_result_e10 re = {0, 0, 0};
int stat_U = gsl_sf_hyperg_U_int_e10_e(a, b, x, &re);
int stat_c = gsl_sf_result_smash_e(&re, result);
return GSL_ERROR_SELECT_2(stat_c, stat_U);
}
int
gsl_sf_hyperg_U_e(const double a, const double b, const double x, gsl_sf_result * result)
{
gsl_sf_result_e10 re = {0, 0, 0};
int stat_U = gsl_sf_hyperg_U_e10_e(a, b, x, &re);
int stat_c = gsl_sf_result_smash_e(&re, result);
return GSL_ERROR_SELECT_2(stat_c, stat_U);
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_hyperg_U_int(const int a, const int b, const double x)
{
EVAL_RESULT(gsl_sf_hyperg_U_int_e(a, b, x, &result));
}
double gsl_sf_hyperg_U(const double a, const double b, const double x)
{
EVAL_RESULT(gsl_sf_hyperg_U_e(a, b, x, &result));
}
|