1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/* specfunc/lambert.c
*
* Copyright (C) 2007 Brian Gough
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_lambert.h>
/* Started with code donated by K. Briggs; added
* error estimates, GSL foo, and minor tweaks.
* Some Lambert-ology from
* [Corless, Gonnet, Hare, and Jeffrey, "On Lambert's W Function".]
*/
/* Halley iteration (eqn. 5.12, Corless et al) */
static int
halley_iteration(
double x,
double w_initial,
unsigned int max_iters,
gsl_sf_result * result
)
{
double w = w_initial;
unsigned int i;
for(i=0; i<max_iters; i++) {
double tol;
const double e = exp(w);
const double p = w + 1.0;
double t = w*e - x;
/* printf("FOO: %20.16g %20.16g\n", w, t); */
if (w > 0) {
t = (t/p)/e; /* Newton iteration */
} else {
t /= e*p - 0.5*(p + 1.0)*t/p; /* Halley iteration */
};
w -= t;
tol = 10 * GSL_DBL_EPSILON * GSL_MAX_DBL(fabs(w), 1.0/(fabs(p)*e));
if(fabs(t) < tol)
{
result->val = w;
result->err = 2.0*tol;
return GSL_SUCCESS;
}
}
/* should never get here */
result->val = w;
result->err = fabs(w);
return GSL_EMAXITER;
}
/* series which appears for q near zero;
* only the argument is different for the different branches
*/
static double
series_eval(double r)
{
static const double c[12] = {
-1.0,
2.331643981597124203363536062168,
-1.812187885639363490240191647568,
1.936631114492359755363277457668,
-2.353551201881614516821543561516,
3.066858901050631912893148922704,
-4.175335600258177138854984177460,
5.858023729874774148815053846119,
-8.401032217523977370984161688514,
12.250753501314460424,
-18.100697012472442755,
27.029044799010561650
};
const double t_8 = c[8] + r*(c[9] + r*(c[10] + r*c[11]));
const double t_5 = c[5] + r*(c[6] + r*(c[7] + r*t_8));
const double t_1 = c[1] + r*(c[2] + r*(c[3] + r*(c[4] + r*t_5)));
return c[0] + r*t_1;
}
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int
gsl_sf_lambert_W0_e(double x, gsl_sf_result * result)
{
const double one_over_E = 1.0/M_E;
const double q = x + one_over_E;
if(x == 0.0) {
result->val = 0.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else if(q < 0.0) {
/* Strictly speaking this is an error. But because of the
* arithmetic operation connecting x and q, I am a little
* lenient in case of some epsilon overshoot. The following
* answer is quite accurate in that case. Anyway, we have
* to return GSL_EDOM.
*/
result->val = -1.0;
result->err = sqrt(-q);
return GSL_EDOM;
}
else if(q == 0.0) {
result->val = -1.0;
result->err = GSL_DBL_EPSILON; /* cannot error is zero, maybe q == 0 by "accident" */
return GSL_SUCCESS;
}
else if(q < 1.0e-03) {
/* series near -1/E in sqrt(q) */
const double r = sqrt(q);
result->val = series_eval(r);
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
static const unsigned int MAX_ITERS = 10;
double w;
if (x < 1.0) {
/* obtain initial approximation from series near x=0;
* no need for extra care, since the Halley iteration
* converges nicely on this branch
*/
const double p = sqrt(2.0 * M_E * q);
w = -1.0 + p*(1.0 + p*(-1.0/3.0 + p*11.0/72.0));
}
else {
/* obtain initial approximation from rough asymptotic */
w = log(x);
if(x > 3.0) w -= log(w);
}
return halley_iteration(x, w, MAX_ITERS, result);
}
}
int
gsl_sf_lambert_Wm1_e(double x, gsl_sf_result * result)
{
if(x > 0.0) {
return gsl_sf_lambert_W0_e(x, result);
}
else if(x == 0.0) {
result->val = 0.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else {
static const unsigned int MAX_ITERS = 32;
const double one_over_E = 1.0/M_E;
const double q = x + one_over_E;
double w;
if (q < 0.0) {
/* As in the W0 branch above, return some reasonable answer anyway. */
result->val = -1.0;
result->err = sqrt(-q);
return GSL_EDOM;
}
if(x < -1.0e-6) {
/* Obtain initial approximation from series about q = 0,
* as long as we're not very close to x = 0.
* Use full series and try to bail out if q is too small,
* since the Halley iteration has bad convergence properties
* in finite arithmetic for q very small, because the
* increment alternates and p is near zero.
*/
const double r = -sqrt(q);
w = series_eval(r);
if(q < 3.0e-3) {
/* this approximation is good enough */
result->val = w;
result->err = 5.0 * GSL_DBL_EPSILON * fabs(w);
return GSL_SUCCESS;
}
}
else {
/* Obtain initial approximation from asymptotic near zero. */
const double L_1 = log(-x);
const double L_2 = log(-L_1);
w = L_1 - L_2 + L_2/L_1;
}
return halley_iteration(x, w, MAX_ITERS, result);
}
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_lambert_W0(double x)
{
EVAL_RESULT(gsl_sf_lambert_W0_e(x, &result));
}
double gsl_sf_lambert_Wm1(double x)
{
EVAL_RESULT(gsl_sf_lambert_Wm1_e(x, &result));
}
|