1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
|
/* specfunc/legendre_H3d.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_trig.h>
#include <gsl/gsl_sf_legendre.h>
#include "error.h"
#include "legendre.h"
/* See [Abbott+Schaefer, Ap.J. 308, 546 (1986)] for
* enough details to follow what is happening here.
*/
/* Logarithm of normalization factor, Log[N(ell,lambda)].
* N(ell,lambda) = Product[ lambda^2 + n^2, {n,0,ell} ]
* = |Gamma(ell + 1 + I lambda)|^2 lambda sinh(Pi lambda) / Pi
* Assumes ell >= 0.
*/
static
int
legendre_H3d_lnnorm(const int ell, const double lambda, double * result)
{
double abs_lam = fabs(lambda);
if(abs_lam == 0.0) {
*result = 0.0;
GSL_ERROR ("error", GSL_EDOM);
}
else if(lambda > (ell + 1.0)/GSL_ROOT3_DBL_EPSILON) {
/* There is a cancellation between the sinh(Pi lambda)
* term and the log(gamma(ell + 1 + i lambda) in the
* result below, so we show some care and save some digits.
* Note that the above guarantees that lambda is large,
* since ell >= 0. We use Stirling and a simple expansion
* of sinh.
*/
double rat = (ell+1.0)/lambda;
double ln_lam2ell2 = 2.0*log(lambda) + log(1.0 + rat*rat);
double lg_corrected = -2.0*(ell+1.0) + M_LNPI + (ell+0.5)*ln_lam2ell2 + 1.0/(288.0*lambda*lambda);
double angle_terms = lambda * 2.0 * rat * (1.0 - rat*rat/3.0);
*result = log(abs_lam) + lg_corrected + angle_terms - M_LNPI;
return GSL_SUCCESS;
}
else {
gsl_sf_result lg_r;
gsl_sf_result lg_theta;
gsl_sf_result ln_sinh;
gsl_sf_lngamma_complex_e(ell+1.0, lambda, &lg_r, &lg_theta);
gsl_sf_lnsinh_e(M_PI * abs_lam, &ln_sinh);
*result = log(abs_lam) + ln_sinh.val + 2.0*lg_r.val - M_LNPI;
return GSL_SUCCESS;
}
}
/* Calculate series for small eta*lambda.
* Assumes eta > 0, lambda != 0.
*
* This is just the defining hypergeometric for the Legendre function.
*
* P^{mu}_{-1/2 + I lam}(z) = 1/Gamma(l+3/2) ((z+1)/(z-1)^(mu/2)
* 2F1(1/2 - I lam, 1/2 + I lam; l+3/2; (1-z)/2)
* We use
* z = cosh(eta)
* (z-1)/2 = sinh^2(eta/2)
*
* And recall
* H3d = sqrt(Pi Norm /(2 lam^2 sinh(eta))) P^{-l-1/2}_{-1/2 + I lam}(cosh(eta))
*/
static
int
legendre_H3d_series(const int ell, const double lambda, const double eta,
gsl_sf_result * result)
{
const int nmax = 5000;
const double shheta = sinh(0.5*eta);
const double ln_zp1 = M_LN2 + log(1.0 + shheta*shheta);
const double ln_zm1 = M_LN2 + 2.0*log(shheta);
const double zeta = -shheta*shheta;
gsl_sf_result lg_lp32;
double term = 1.0;
double sum = 1.0;
double sum_err = 0.0;
gsl_sf_result lnsheta;
double lnN;
double lnpre_val, lnpre_err, lnprepow;
int stat_e;
int n;
gsl_sf_lngamma_e(ell + 3.0/2.0, &lg_lp32);
gsl_sf_lnsinh_e(eta, &lnsheta);
legendre_H3d_lnnorm(ell, lambda, &lnN);
lnprepow = 0.5*(ell + 0.5) * (ln_zm1 - ln_zp1);
lnpre_val = lnprepow + 0.5*(lnN + M_LNPI - M_LN2 - lnsheta.val) - lg_lp32.val - log(fabs(lambda));
lnpre_err = lnsheta.err + lg_lp32.err + GSL_DBL_EPSILON * fabs(lnpre_val);
lnpre_err += 2.0*GSL_DBL_EPSILON * (fabs(lnN) + M_LNPI + M_LN2);
lnpre_err += 2.0*GSL_DBL_EPSILON * (0.5*(ell + 0.5) * (fabs(ln_zm1) + fabs(ln_zp1)));
for(n=1; n<nmax; n++) {
double aR = n - 0.5;
term *= (aR*aR + lambda*lambda)*zeta/(ell + n + 0.5)/n;
sum += term;
sum_err += 2.0*GSL_DBL_EPSILON*fabs(term);
if(fabs(term/sum) < 2.0 * GSL_DBL_EPSILON) break;
}
stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err, sum, fabs(term)+sum_err, result);
return GSL_ERROR_SELECT_2(stat_e, (n==nmax ? GSL_EMAXITER : GSL_SUCCESS));
}
/* Evaluate legendre_H3d(ell+1)/legendre_H3d(ell)
* by continued fraction.
*/
#if 0
static
int
legendre_H3d_CF1(const int ell, const double lambda, const double coth_eta,
gsl_sf_result * result)
{
const double RECUR_BIG = GSL_SQRT_DBL_MAX;
const int maxiter = 5000;
int n = 1;
double Anm2 = 1.0;
double Bnm2 = 0.0;
double Anm1 = 0.0;
double Bnm1 = 1.0;
double a1 = hypot(lambda, ell+1.0);
double b1 = (2.0*ell + 3.0) * coth_eta;
double An = b1*Anm1 + a1*Anm2;
double Bn = b1*Bnm1 + a1*Bnm2;
double an, bn;
double fn = An/Bn;
while(n < maxiter) {
double old_fn;
double del;
n++;
Anm2 = Anm1;
Bnm2 = Bnm1;
Anm1 = An;
Bnm1 = Bn;
an = -(lambda*lambda + ((double)ell + n)*((double)ell + n));
bn = (2.0*ell + 2.0*n + 1.0) * coth_eta;
An = bn*Anm1 + an*Anm2;
Bn = bn*Bnm1 + an*Bnm2;
if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) {
An /= RECUR_BIG;
Bn /= RECUR_BIG;
Anm1 /= RECUR_BIG;
Bnm1 /= RECUR_BIG;
Anm2 /= RECUR_BIG;
Bnm2 /= RECUR_BIG;
}
old_fn = fn;
fn = An/Bn;
del = old_fn/fn;
if(fabs(del - 1.0) < 4.0*GSL_DBL_EPSILON) break;
}
result->val = fn;
result->err = 2.0 * GSL_DBL_EPSILON * (sqrt(n)+1.0) * fabs(fn);
if(n >= maxiter)
GSL_ERROR ("error", GSL_EMAXITER);
else
return GSL_SUCCESS;
}
#endif /* 0 */
/* Evaluate legendre_H3d(ell+1)/legendre_H3d(ell)
* by continued fraction. Use the Gautschi (Euler)
* equivalent series.
*/
/* FIXME: Maybe we have to worry about this. The a_k are
* not positive and there can be a blow-up. It happened
* for J_nu once or twice. Then we should probably use
* the method above.
*/
static
int
legendre_H3d_CF1_ser(const int ell, const double lambda, const double coth_eta,
gsl_sf_result * result)
{
const double pre = hypot(lambda, ell+1.0)/((2.0*ell+3)*coth_eta);
const int maxk = 20000;
double tk = 1.0;
double sum = 1.0;
double rhok = 0.0;
double sum_err = 0.0;
int k;
for(k=1; k<maxk; k++) {
double tlk = (2.0*ell + 1.0 + 2.0*k);
double l1k = (ell + 1.0 + k);
double ak = -(lambda*lambda + l1k*l1k)/(tlk*(tlk+2.0)*coth_eta*coth_eta);
rhok = -ak*(1.0 + rhok)/(1.0 + ak*(1.0 + rhok));
tk *= rhok;
sum += tk;
sum_err += 2.0 * GSL_DBL_EPSILON * k * fabs(tk);
if(fabs(tk/sum) < GSL_DBL_EPSILON) break;
}
result->val = pre * sum;
result->err = fabs(pre * tk);
result->err += fabs(pre * sum_err);
result->err += 4.0 * GSL_DBL_EPSILON * fabs(result->val);
if(k >= maxk)
GSL_ERROR ("error", GSL_EMAXITER);
else
return GSL_SUCCESS;
}
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int
gsl_sf_legendre_H3d_0_e(const double lambda, const double eta, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(eta < 0.0) {
DOMAIN_ERROR(result);
}
else if(eta == 0.0 || lambda == 0.0) {
result->val = 1.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else {
const double lam_eta = lambda * eta;
gsl_sf_result s;
gsl_sf_sin_err_e(lam_eta, 2.0*GSL_DBL_EPSILON * fabs(lam_eta), &s);
if(eta > -0.5*GSL_LOG_DBL_EPSILON) {
double f = 2.0 / lambda * exp(-eta);
result->val = f * s.val;
result->err = fabs(f * s.val) * (fabs(eta) + 1.0) * GSL_DBL_EPSILON;
result->err += fabs(f) * s.err;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
}
else {
double f = 1.0/(lambda*sinh(eta));
result->val = f * s.val;
result->err = fabs(f * s.val) * (fabs(eta) + 1.0) * GSL_DBL_EPSILON;
result->err += fabs(f) * s.err;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
}
return GSL_SUCCESS;
}
}
int
gsl_sf_legendre_H3d_1_e(const double lambda, const double eta, gsl_sf_result * result)
{
const double xi = fabs(eta*lambda);
const double lsq = lambda*lambda;
const double lsqp1 = lsq + 1.0;
/* CHECK_POINTER(result) */
if(eta < 0.0) {
DOMAIN_ERROR(result);
}
else if(eta == 0.0 || lambda == 0.0) {
result->val = 0.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else if(xi < GSL_ROOT5_DBL_EPSILON && eta < GSL_ROOT5_DBL_EPSILON) {
double etasq = eta*eta;
double xisq = xi*xi;
double term1 = (etasq + xisq)/3.0;
double term2 = -(2.0*etasq*etasq + 5.0*etasq*xisq + 3.0*xisq*xisq)/90.0;
double sinh_term = 1.0 - eta*eta/6.0 * (1.0 - 7.0/60.0*eta*eta);
double pre = sinh_term/sqrt(lsqp1) / eta;
result->val = pre * (term1 + term2);
result->err = pre * GSL_DBL_EPSILON * (fabs(term1) + fabs(term2));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
double sin_term; /* Sin(xi)/xi */
double cos_term; /* Cos(xi) */
double coth_term; /* eta/Tanh(eta) */
double sinh_term; /* eta/Sinh(eta) */
double sin_term_err;
double cos_term_err;
double t1;
double pre_val;
double pre_err;
double term1;
double term2;
if(xi < GSL_ROOT5_DBL_EPSILON) {
sin_term = 1.0 - xi*xi/6.0 * (1.0 - xi*xi/20.0);
cos_term = 1.0 - 0.5*xi*xi * (1.0 - xi*xi/12.0);
sin_term_err = GSL_DBL_EPSILON;
cos_term_err = GSL_DBL_EPSILON;
}
else {
gsl_sf_result sin_xi_result;
gsl_sf_result cos_xi_result;
gsl_sf_sin_e(xi, &sin_xi_result);
gsl_sf_cos_e(xi, &cos_xi_result);
sin_term = sin_xi_result.val/xi;
cos_term = cos_xi_result.val;
sin_term_err = sin_xi_result.err/fabs(xi);
cos_term_err = cos_xi_result.err;
}
if(eta < GSL_ROOT5_DBL_EPSILON) {
coth_term = 1.0 + eta*eta/3.0 * (1.0 - eta*eta/15.0);
sinh_term = 1.0 - eta*eta/6.0 * (1.0 - 7.0/60.0*eta*eta);
}
else {
coth_term = eta/tanh(eta);
sinh_term = eta/sinh(eta);
}
t1 = sqrt(lsqp1) * eta;
pre_val = sinh_term/t1;
pre_err = 2.0 * GSL_DBL_EPSILON * fabs(pre_val);
term1 = sin_term*coth_term;
term2 = cos_term;
result->val = pre_val * (term1 - term2);
result->err = pre_err * fabs(term1 - term2);
result->err += pre_val * (sin_term_err * coth_term + cos_term_err);
result->err += pre_val * fabs(term1-term2) * (fabs(eta) + 1.0) * GSL_DBL_EPSILON;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
}
int
gsl_sf_legendre_H3d_e(const int ell, const double lambda, const double eta,
gsl_sf_result * result)
{
const double abs_lam = fabs(lambda);
const double lsq = abs_lam*abs_lam;
const double xi = abs_lam * eta;
const double cosh_eta = cosh(eta);
/* CHECK_POINTER(result) */
if(eta < 0.0) {
DOMAIN_ERROR(result);
}
else if(eta > GSL_LOG_DBL_MAX) {
/* cosh(eta) is too big. */
OVERFLOW_ERROR(result);
}
else if(ell == 0) {
return gsl_sf_legendre_H3d_0_e(lambda, eta, result);
}
else if(ell == 1) {
return gsl_sf_legendre_H3d_1_e(lambda, eta, result);
}
else if(eta == 0.0) {
result->val = 0.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else if(xi < 1.0) {
return legendre_H3d_series(ell, lambda, eta, result);
}
else if((ell*ell+lsq)/sqrt(1.0+lsq)/(cosh_eta*cosh_eta) < 5.0*GSL_ROOT3_DBL_EPSILON) {
/* Large argument.
*/
gsl_sf_result P;
double lm;
int stat_P = gsl_sf_conicalP_large_x_e(-ell-0.5, lambda, cosh_eta, &P, &lm);
if(P.val == 0.0) {
result->val = 0.0;
result->err = 0.0;
return stat_P;
}
else {
double lnN;
gsl_sf_result lnsh;
double ln_abslam;
double lnpre_val, lnpre_err;
int stat_e;
gsl_sf_lnsinh_e(eta, &lnsh);
legendre_H3d_lnnorm(ell, lambda, &lnN);
ln_abslam = log(abs_lam);
lnpre_val = 0.5*(M_LNPI + lnN - M_LN2 - lnsh.val) - ln_abslam;
lnpre_err = lnsh.err;
lnpre_err += 2.0 * GSL_DBL_EPSILON * (0.5*(M_LNPI + M_LN2 + fabs(lnN)) + fabs(ln_abslam));
lnpre_err += 2.0 * GSL_DBL_EPSILON * fabs(lnpre_val);
stat_e = gsl_sf_exp_mult_err_e(lnpre_val + lm, lnpre_err, P.val, P.err, result);
return GSL_ERROR_SELECT_2(stat_e, stat_P);
}
}
else if(abs_lam > 1000.0*ell*ell) {
/* Large degree.
*/
gsl_sf_result P;
double lm;
int stat_P = gsl_sf_conicalP_xgt1_neg_mu_largetau_e(ell+0.5,
lambda,
cosh_eta, eta,
&P, &lm);
if(P.val == 0.0) {
result->val = 0.0;
result->err = 0.0;
return stat_P;
}
else {
double lnN;
gsl_sf_result lnsh;
double ln_abslam;
double lnpre_val, lnpre_err;
int stat_e;
gsl_sf_lnsinh_e(eta, &lnsh);
legendre_H3d_lnnorm(ell, lambda, &lnN);
ln_abslam = log(abs_lam);
lnpre_val = 0.5*(M_LNPI + lnN - M_LN2 - lnsh.val) - ln_abslam;
lnpre_err = lnsh.err;
lnpre_err += GSL_DBL_EPSILON * (0.5*(M_LNPI + M_LN2 + fabs(lnN)) + fabs(ln_abslam));
lnpre_err += 2.0 * GSL_DBL_EPSILON * fabs(lnpre_val);
stat_e = gsl_sf_exp_mult_err_e(lnpre_val + lm, lnpre_err, P.val, P.err, result);
return GSL_ERROR_SELECT_2(stat_e, stat_P);
}
}
else {
/* Backward recurrence.
*/
const double coth_eta = 1.0/tanh(eta);
const double coth_err_mult = fabs(eta) + 1.0;
gsl_sf_result rH;
int stat_CF1 = legendre_H3d_CF1_ser(ell, lambda, coth_eta, &rH);
double Hlm1;
double Hl = GSL_SQRT_DBL_MIN;
double Hlp1 = rH.val * Hl;
int lp;
for(lp=ell; lp>0; lp--) {
double root_term_0 = hypot(lambda,lp);
double root_term_1 = hypot(lambda,lp+1.0);
Hlm1 = ((2.0*lp + 1.0)*coth_eta*Hl - root_term_1 * Hlp1)/root_term_0;
Hlp1 = Hl;
Hl = Hlm1;
}
if(fabs(Hl) > fabs(Hlp1)) {
gsl_sf_result H0;
int stat_H0 = gsl_sf_legendre_H3d_0_e(lambda, eta, &H0);
result->val = GSL_SQRT_DBL_MIN/Hl * H0.val;
result->err = GSL_SQRT_DBL_MIN/fabs(Hl) * H0.err;
result->err += fabs(rH.err/rH.val) * (ell+1.0) * coth_err_mult * fabs(result->val);
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_ERROR_SELECT_2(stat_H0, stat_CF1);
}
else {
gsl_sf_result H1;
int stat_H1 = gsl_sf_legendre_H3d_1_e(lambda, eta, &H1);
result->val = GSL_SQRT_DBL_MIN/Hlp1 * H1.val;
result->err = GSL_SQRT_DBL_MIN/fabs(Hlp1) * H1.err;
result->err += fabs(rH.err/rH.val) * (ell+1.0) * coth_err_mult * fabs(result->val);
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_ERROR_SELECT_2(stat_H1, stat_CF1);
}
}
}
int
gsl_sf_legendre_H3d_array(const int lmax, const double lambda, const double eta, double * result_array)
{
/* CHECK_POINTER(result_array) */
if(eta < 0.0 || lmax < 0) {
int ell;
for(ell=0; ell<=lmax; ell++) result_array[ell] = 0.0;
GSL_ERROR ("domain error", GSL_EDOM);
}
else if(eta > GSL_LOG_DBL_MAX) {
/* cosh(eta) is too big. */
int ell;
for(ell=0; ell<=lmax; ell++) result_array[ell] = 0.0;
GSL_ERROR ("overflow", GSL_EOVRFLW);
}
else if(lmax == 0) {
gsl_sf_result H0;
int stat = gsl_sf_legendre_H3d_e(0, lambda, eta, &H0);
result_array[0] = H0.val;
return stat;
}
else {
/* Not the most efficient method. But what the hell... it's simple.
*/
gsl_sf_result r_Hlp1;
gsl_sf_result r_Hl;
int stat_lmax = gsl_sf_legendre_H3d_e(lmax, lambda, eta, &r_Hlp1);
int stat_lmaxm1 = gsl_sf_legendre_H3d_e(lmax-1, lambda, eta, &r_Hl);
int stat_max = GSL_ERROR_SELECT_2(stat_lmax, stat_lmaxm1);
const double coth_eta = 1.0/tanh(eta);
int stat_recursion = GSL_SUCCESS;
double Hlp1 = r_Hlp1.val;
double Hl = r_Hl.val;
double Hlm1;
int ell;
result_array[lmax] = Hlp1;
result_array[lmax-1] = Hl;
for(ell=lmax-1; ell>0; ell--) {
double root_term_0 = hypot(lambda,ell);
double root_term_1 = hypot(lambda,ell+1.0);
Hlm1 = ((2.0*ell + 1.0)*coth_eta*Hl - root_term_1 * Hlp1)/root_term_0;
result_array[ell-1] = Hlm1;
if(!(Hlm1 < GSL_DBL_MAX)) stat_recursion = GSL_EOVRFLW;
Hlp1 = Hl;
Hl = Hlm1;
}
return GSL_ERROR_SELECT_2(stat_recursion, stat_max);
}
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_legendre_H3d_0(const double lambda, const double eta)
{
EVAL_RESULT(gsl_sf_legendre_H3d_0_e(lambda, eta, &result));
}
double gsl_sf_legendre_H3d_1(const double lambda, const double eta)
{
EVAL_RESULT(gsl_sf_legendre_H3d_1_e(lambda, eta, &result));
}
double gsl_sf_legendre_H3d(const int l, const double lambda, const double eta)
{
EVAL_RESULT(gsl_sf_legendre_H3d_e(l, lambda, eta, &result));
}
|