1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
|
/* specfunc/mathieu_charv.c
*
* Copyright (C) 2002, 2009 Lowell Johnson
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* Author: L. Johnson */
#include <config.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_mathieu.h>
/* prototypes */
static double solve_cubic(double c2, double c1, double c0);
static double ceer(int order, double qq, double aa, int nterms)
{
double term, term1;
int ii, n1;
if (order == 0)
term = 0.0;
else
{
term = 2.0*qq*qq/aa;
if (order != 2)
{
n1 = order/2 - 1;
for (ii=0; ii<n1; ii++)
term = qq*qq/(aa - 4.0*(ii+1)*(ii+1) - term);
}
}
term += order*order;
term1 = 0.0;
for (ii=0; ii<nterms; ii++)
term1 = qq*qq/
(aa - (order + 2.0*(nterms - ii))*(order + 2.0*(nterms - ii)) - term1);
if (order == 0)
term1 *= 2.0;
return (term + term1 - aa);
}
static double ceor(int order, double qq, double aa, int nterms)
{
double term, term1;
int ii, n1;
term = qq;
n1 = (int)((float)order/2.0 - 0.5);
for (ii=0; ii<n1; ii++)
term = qq*qq/(aa - (2.0*ii + 1.0)*(2.0*ii + 1.0) - term);
term += order*order;
term1 = 0.0;
for (ii=0; ii<nterms; ii++)
term1 = qq*qq/
(aa - (order + 2.0*(nterms - ii))*(order + 2.0*(nterms - ii)) - term1);
return (term + term1 - aa);
}
static double seer(int order, double qq, double aa, int nterms)
{
double term, term1;
int ii, n1;
term = 0.0;
n1 = order/2 - 1;
for (ii=0; ii<n1; ii++)
term = qq*qq/(aa - 4.0*(ii + 1)*(ii + 1) - term);
term += order*order;
term1 = 0.0;
for (ii=0; ii<nterms; ii++)
term1 = qq*qq/
(aa - (order + 2.0*(nterms - ii))*(order + 2.0*(nterms - ii)) - term1);
return (term + term1 - aa);
}
static double seor(int order, double qq, double aa, int nterms)
{
double term, term1;
int ii, n1;
term = -1.0*qq;
n1 = (int)((float)order/2.0 - 0.5);
for (ii=0; ii<n1; ii++)
term = qq*qq/(aa - (2.0*ii + 1.0)*(2.0*ii + 1.0) - term);
term += order*order;
term1 = 0.0;
for (ii=0; ii<nterms; ii++)
term1 = qq*qq/
(aa - (order + 2.0*(nterms - ii))*(order + 2.0*(nterms - ii)) - term1);
return (term + term1 - aa);
}
/*----------------------------------------------------------------------------
* Asymptotic and approximation routines for the characteristic value.
*
* Adapted from F.A. Alhargan's paper,
* "Algorithms for the Computation of All Mathieu Functions of Integer
* Orders," ACM Transactions on Mathematical Software, Vol. 26, No. 3,
* September 2000, pp. 390-407.
*--------------------------------------------------------------------------*/
static double asymptotic(int order, double qq)
{
double asymp;
double nn, n2, n4, n6;
double hh, ah, ah2, ah3, ah4, ah5;
/* Set up temporary variables to simplify the readability. */
nn = 2*order + 1;
n2 = nn*nn;
n4 = n2*n2;
n6 = n4*n2;
hh = 2*sqrt(qq);
ah = 16*hh;
ah2 = ah*ah;
ah3 = ah2*ah;
ah4 = ah3*ah;
ah5 = ah4*ah;
/* Equation 38, p. 397 of Alhargan's paper. */
asymp = -2*qq + nn*hh - 0.125*(n2 + 1);
asymp -= 0.25*nn*( n2 + 3)/ah;
asymp -= 0.25* ( 5*n4 + 34*n2 + 9)/ah2;
asymp -= 0.25*nn*( 33*n4 + 410*n2 + 405)/ah3;
asymp -= ( 63*n6 + 1260*n4 + 2943*n2 + 486)/ah4;
asymp -= nn*(527*n6 + 15617*n4 + 69001*n2 + 41607)/ah5;
return asymp;
}
/* Solve the cubic x^3 + c2*x^2 + c1*x + c0 = 0 */
static double solve_cubic(double c2, double c1, double c0)
{
double qq, rr, ww, ss, tt;
qq = (3*c1 - c2*c2)/9;
rr = (9*c2*c1 - 27*c0 - 2*c2*c2*c2)/54;
ww = qq*qq*qq + rr*rr;
if (ww >= 0)
{
double t1 = rr + sqrt(ww);
ss = fabs(t1)/t1*pow(fabs(t1), 1/3.);
t1 = rr - sqrt(ww);
tt = fabs(t1)/t1*pow(fabs(t1), 1/3.);
}
else
{
double theta = acos(rr/sqrt(-qq*qq*qq));
ss = 2*sqrt(-qq)*cos((theta + 4*M_PI)/3.);
tt = 0.0;
}
return (ss + tt - c2/3);
}
/* Compute an initial approximation for the characteristic value. */
static double approx_c(int order, double qq)
{
double approx;
double c0, c1, c2;
if (order < 0)
{
GSL_ERROR_VAL("Undefined order for Mathieu function", GSL_EINVAL, 0.0);
}
switch (order)
{
case 0:
if (qq <= 4)
return (2 - sqrt(4 + 2*qq*qq)); /* Eqn. 31 */
else
return asymptotic(order, qq);
break;
case 1:
if (qq <= 4)
return (5 + 0.5*(qq - sqrt(5*qq*qq - 16*qq + 64))); /* Eqn. 32 */
else
return asymptotic(order, qq);
break;
case 2:
if (qq <= 3)
{
c2 = -8.0; /* Eqn. 33 */
c1 = -48 - 3*qq*qq;
c0 = 20*qq*qq;
}
else
return asymptotic(order, qq);
break;
case 3:
if (qq <= 6.25)
{
c2 = -qq - 8; /* Eqn. 34 */
c1 = 16*qq - 128 - 2*qq*qq;
c0 = qq*qq*(qq + 8);
}
else
return asymptotic(order, qq);
break;
default:
if (order < 70)
{
if (1.7*order > 2*sqrt(qq))
{
/* Eqn. 30 */
double n2 = (double)(order*order);
double n22 = (double)((n2 - 1)*(n2 - 1));
double q2 = qq*qq;
double q4 = q2*q2;
approx = n2 + 0.5*q2/(n2 - 1);
approx += (5*n2 + 7)*q4/(32*n22*(n2 - 1)*(n2 - 4));
approx += (9*n2*n2 + 58*n2 + 29)*q4*q2/
(64*n22*n22*(n2 - 1)*(n2 - 4)*(n2 - 9));
if (1.4*order < 2*sqrt(qq))
{
approx += asymptotic(order, qq);
approx *= 0.5;
}
}
else
approx = asymptotic(order, qq);
return approx;
}
else
return order*order;
}
/* Solve the cubic x^3 + c2*x^2 + c1*x + c0 = 0 */
approx = solve_cubic(c2, c1, c0);
if ( approx < 0 && sqrt(qq) > 0.1*order )
return asymptotic(order-1, qq);
else
return (order*order + fabs(approx));
}
static double approx_s(int order, double qq)
{
double approx;
double c0, c1, c2;
if (order < 1)
{
GSL_ERROR_VAL("Undefined order for Mathieu function", GSL_EINVAL, 0.0);
}
switch (order)
{
case 1:
if (qq <= 4)
return (5 - 0.5*(qq + sqrt(5*qq*qq + 16*qq + 64))); /* Eqn. 35 */
else
return asymptotic(order-1, qq);
break;
case 2:
if (qq <= 5)
return (10 - sqrt(36 + qq*qq)); /* Eqn. 36 */
else
return asymptotic(order-1, qq);
break;
case 3:
if (qq <= 6.25)
{
c2 = qq - 8; /* Eqn. 37 */
c1 = -128 - 16*qq - 2*qq*qq;
c0 = qq*qq*(8 - qq);
}
else
return asymptotic(order-1, qq);
break;
default:
if (order < 70)
{
if (1.7*order > 2*sqrt(qq))
{
/* Eqn. 30 */
double n2 = (double)(order*order);
double n22 = (double)((n2 - 1)*(n2 - 1));
double q2 = qq*qq;
double q4 = q2*q2;
approx = n2 + 0.5*q2/(n2 - 1);
approx += (5*n2 + 7)*q4/(32*n22*(n2 - 1)*(n2 - 4));
approx += (9*n2*n2 + 58*n2 + 29)*q4*q2/
(64*n22*n22*(n2 - 1)*(n2 - 4)*(n2 - 9));
if (1.4*order < 2*sqrt(qq))
{
approx += asymptotic(order-1, qq);
approx *= 0.5;
}
}
else
approx = asymptotic(order-1, qq);
return approx;
}
else
return order*order;
}
/* Solve the cubic x^3 + c2*x^2 + c1*x + c0 = 0 */
approx = solve_cubic(c2, c1, c0);
if ( approx < 0 && sqrt(qq) > 0.1*order )
return asymptotic(order-1, qq);
else
return (order*order + fabs(approx));
}
int gsl_sf_mathieu_a_e(int order, double qq, gsl_sf_result *result)
{
int even_odd, nterms = 50, ii, counter = 0, maxcount = 1000;
int dir = 0; /* step direction for new search */
double a1, a2, fa, fa1, dela, aa_orig, da = 0.025, aa;
double aa_approx; /* current approximation for solution */
even_odd = 0;
if (order % 2 != 0)
even_odd = 1;
/* If the argument is 0, then the coefficient is simply the square of
the order. */
if (qq == 0)
{
result->val = order*order;
result->err = 0.0;
return GSL_SUCCESS;
}
/* Use symmetry characteristics of the functions to handle cases with
negative order and/or argument q. See Abramowitz & Stegun, 20.8.3. */
if (order < 0)
order *= -1;
if (qq < 0.0)
{
if (even_odd == 0)
return gsl_sf_mathieu_a_e(order, -qq, result);
else
return gsl_sf_mathieu_b_e(order, -qq, result);
}
/* Compute an initial approximation for the characteristic value. */
aa_approx = approx_c(order, qq);
/* Save the original approximation for later comparison. */
aa_orig = aa = aa_approx;
/* Loop as long as the final value is not near the approximate value
(with a max limit to avoid potential infinite loop). */
while (counter < maxcount)
{
a1 = aa + 0.001;
ii = 0;
if (even_odd == 0)
fa1 = ceer(order, qq, a1, nterms);
else
fa1 = ceor(order, qq, a1, nterms);
for (;;)
{
if (even_odd == 0)
fa = ceer(order, qq, aa, nterms);
else
fa = ceor(order, qq, aa, nterms);
a2 = a1;
a1 = aa;
if (fa == fa1)
{
result->err = GSL_DBL_EPSILON;
break;
}
aa -= (aa - a2)/(fa - fa1)*fa;
dela = fabs(aa - a2);
if (dela < GSL_DBL_EPSILON)
{
result->err = GSL_DBL_EPSILON;
break;
}
if (ii > 40)
{
result->err = dela;
break;
}
fa1 = fa;
ii++;
}
/* If the solution found is not near the original approximation,
tweak the approximate value, and try again. */
if (fabs(aa - aa_orig) > (3 + 0.01*order*fabs(aa_orig)) ||
(order > 10 && fabs(aa - aa_orig) > 1.5*order))
{
counter++;
if (counter == maxcount)
{
result->err = fabs(aa - aa_orig);
break;
}
if (aa > aa_orig)
{
if (dir == 1)
da /= 2;
dir = -1;
}
else
{
if (dir == -1)
da /= 2;
dir = 1;
}
aa_approx += dir*da*counter;
aa = aa_approx;
continue;
}
else
break;
}
result->val = aa;
/* If we went through the maximum number of retries and still didn't
find the solution, let us know. */
if (counter == maxcount)
{
GSL_ERROR("Wrong characteristic Mathieu value", GSL_EFAILED);
}
return GSL_SUCCESS;
}
int gsl_sf_mathieu_b_e(int order, double qq, gsl_sf_result *result)
{
int even_odd, nterms = 50, ii, counter = 0, maxcount = 1000;
int dir = 0; /* step direction for new search */
double a1, a2, fa, fa1, dela, aa_orig, da = 0.025, aa;
double aa_approx; /* current approximation for solution */
even_odd = 0;
if (order % 2 != 0)
even_odd = 1;
/* The order cannot be 0. */
if (order == 0)
{
GSL_ERROR("Characteristic value undefined for order 0", GSL_EFAILED);
}
/* If the argument is 0, then the coefficient is simply the square of
the order. */
if (qq == 0)
{
result->val = order*order;
result->err = 0.0;
return GSL_SUCCESS;
}
/* Use symmetry characteristics of the functions to handle cases with
negative order and/or argument q. See Abramowitz & Stegun, 20.8.3. */
if (order < 0)
order *= -1;
if (qq < 0.0)
{
if (even_odd == 0)
return gsl_sf_mathieu_b_e(order, -qq, result);
else
return gsl_sf_mathieu_a_e(order, -qq, result);
}
/* Compute an initial approximation for the characteristic value. */
aa_approx = approx_s(order, qq);
/* Save the original approximation for later comparison. */
aa_orig = aa = aa_approx;
/* Loop as long as the final value is not near the approximate value
(with a max limit to avoid potential infinite loop). */
while (counter < maxcount)
{
a1 = aa + 0.001;
ii = 0;
if (even_odd == 0)
fa1 = seer(order, qq, a1, nterms);
else
fa1 = seor(order, qq, a1, nterms);
for (;;)
{
if (even_odd == 0)
fa = seer(order, qq, aa, nterms);
else
fa = seor(order, qq, aa, nterms);
a2 = a1;
a1 = aa;
if (fa == fa1)
{
result->err = GSL_DBL_EPSILON;
break;
}
aa -= (aa - a2)/(fa - fa1)*fa;
dela = fabs(aa - a2);
if (dela < 1e-18)
{
result->err = GSL_DBL_EPSILON;
break;
}
if (ii > 40)
{
result->err = dela;
break;
}
fa1 = fa;
ii++;
}
/* If the solution found is not near the original approximation,
tweak the approximate value, and try again. */
if (fabs(aa - aa_orig) > (3 + 0.01*order*fabs(aa_orig)) ||
(order > 10 && fabs(aa - aa_orig) > 1.5*order))
{
counter++;
if (counter == maxcount)
{
result->err = fabs(aa - aa_orig);
break;
}
if (aa > aa_orig)
{
if (dir == 1)
da /= 2;
dir = -1;
}
else
{
if (dir == -1)
da /= 2;
dir = 1;
}
aa_approx += dir*da*counter;
aa = aa_approx;
continue;
}
else
break;
}
result->val = aa;
/* If we went through the maximum number of retries and still didn't
find the solution, let us know. */
if (counter == maxcount)
{
GSL_ERROR("Wrong characteristic Mathieu value", GSL_EFAILED);
}
return GSL_SUCCESS;
}
/* Eigenvalue solutions for characteristic values below. */
/* figi.c converted from EISPACK Fortran FIGI.F.
*
* given a nonsymmetric tridiagonal matrix such that the products
* of corresponding pairs of off-diagonal elements are all
* non-negative, this subroutine reduces it to a symmetric
* tridiagonal matrix with the same eigenvalues. if, further,
* a zero product only occurs when both factors are zero,
* the reduced matrix is similar to the original matrix.
*
* on input
*
* n is the order of the matrix.
*
* t contains the input matrix. its subdiagonal is
* stored in the last n-1 positions of the first column,
* its diagonal in the n positions of the second column,
* and its superdiagonal in the first n-1 positions of
* the third column. t(1,1) and t(n,3) are arbitrary.
*
* on output
*
* t is unaltered.
*
* d contains the diagonal elements of the symmetric matrix.
*
* e contains the subdiagonal elements of the symmetric
* matrix in its last n-1 positions. e(1) is not set.
*
* e2 contains the squares of the corresponding elements of e.
* e2 may coincide with e if the squares are not needed.
*
* ierr is set to
* zero for normal return,
* n+i if t(i,1)*t(i-1,3) is negative,
* -(3*n+i) if t(i,1)*t(i-1,3) is zero with one factor
* non-zero. in this case, the eigenvectors of
* the symmetric matrix are not simply related
* to those of t and should not be sought.
*
* questions and comments should be directed to burton s. garbow,
* mathematics and computer science div, argonne national laboratory
*
* this version dated august 1983.
*/
static int figi(int nn, double *tt, double *dd, double *ee,
double *e2)
{
int ii;
for (ii=0; ii<nn; ii++)
{
if (ii != 0)
{
e2[ii] = tt[3*ii]*tt[3*(ii-1)+2];
if (e2[ii] < 0.0)
{
/* set error -- product of some pair of off-diagonal
elements is negative */
return (nn + ii);
}
if (e2[ii] == 0.0 && (tt[3*ii] != 0.0 || tt[3*(ii-1)+2] != 0.0))
{
/* set error -- product of some pair of off-diagonal
elements is zero with one member non-zero */
return (-1*(3*nn + ii));
}
ee[ii] = sqrt(e2[ii]);
}
dd[ii] = tt[3*ii+1];
}
return 0;
}
int gsl_sf_mathieu_a_array(int order_min, int order_max, double qq, gsl_sf_mathieu_workspace *work, double result_array[])
{
unsigned int even_order = work->even_order, odd_order = work->odd_order,
extra_values = work->extra_values, ii, jj;
int status;
double *tt = work->tt, *dd = work->dd, *ee = work->ee, *e2 = work->e2,
*zz = work->zz, *aa = work->aa;
gsl_matrix_view mat, evec;
gsl_vector_view eval;
gsl_eigen_symmv_workspace *wmat = work->wmat;
if (order_max > work->size || order_max <= order_min || order_min < 0)
{
GSL_ERROR ("invalid range [order_min,order_max]", GSL_EINVAL);
}
/* Convert the nonsymmetric tridiagonal matrix to a symmetric tridiagonal
form. */
tt[0] = 0.0;
tt[1] = 0.0;
tt[2] = qq;
for (ii=1; ii<even_order-1; ii++)
{
tt[3*ii] = qq;
tt[3*ii+1] = 4*ii*ii;
tt[3*ii+2] = qq;
}
tt[3*even_order-3] = qq;
tt[3*even_order-2] = 4*(even_order - 1)*(even_order - 1);
tt[3*even_order-1] = 0.0;
tt[3] *= 2;
status = figi((signed int)even_order, tt, dd, ee, e2);
if (status)
{
GSL_ERROR("Internal error in tridiagonal Mathieu matrix", GSL_EFAILED);
}
/* Fill the period \pi matrix. */
for (ii=0; ii<even_order*even_order; ii++)
zz[ii] = 0.0;
zz[0] = dd[0];
zz[1] = ee[1];
for (ii=1; ii<even_order-1; ii++)
{
zz[ii*even_order+ii-1] = ee[ii];
zz[ii*even_order+ii] = dd[ii];
zz[ii*even_order+ii+1] = ee[ii+1];
}
zz[even_order*(even_order-1)+even_order-2] = ee[even_order-1];
zz[even_order*even_order-1] = dd[even_order-1];
/* Compute (and sort) the eigenvalues of the matrix. */
mat = gsl_matrix_view_array(zz, even_order, even_order);
eval = gsl_vector_subvector(work->eval, 0, even_order);
evec = gsl_matrix_submatrix(work->evec, 0, 0, even_order, even_order);
gsl_eigen_symmv(&mat.matrix, &eval.vector, &evec.matrix, wmat);
gsl_eigen_symmv_sort(&eval.vector, &evec.matrix, GSL_EIGEN_SORT_VAL_ASC);
for (ii=0; ii<even_order-extra_values; ii++)
aa[2*ii] = gsl_vector_get(&eval.vector, ii);
/* Fill the period 2\pi matrix. */
for (ii=0; ii<odd_order*odd_order; ii++)
zz[ii] = 0.0;
for (ii=0; ii<odd_order; ii++)
for (jj=0; jj<odd_order; jj++)
{
if (ii == jj)
zz[ii*odd_order+jj] = (2*ii + 1)*(2*ii + 1);
else if (ii == jj + 1 || ii + 1 == jj)
zz[ii*odd_order+jj] = qq;
}
zz[0] += qq;
/* Compute (and sort) the eigenvalues of the matrix. */
mat = gsl_matrix_view_array(zz, odd_order, odd_order);
eval = gsl_vector_subvector(work->eval, 0, odd_order);
evec = gsl_matrix_submatrix(work->evec, 0, 0, odd_order, odd_order);
gsl_eigen_symmv(&mat.matrix, &eval.vector, &evec.matrix, wmat);
gsl_eigen_symmv_sort(&eval.vector, &evec.matrix, GSL_EIGEN_SORT_VAL_ASC);
for (ii=0; ii<odd_order-extra_values; ii++)
aa[2*ii+1] = gsl_vector_get(&eval.vector, ii);
for (ii = order_min ; ii <= order_max ; ii++)
{
result_array[ii - order_min] = aa[ii];
}
return GSL_SUCCESS;
}
int gsl_sf_mathieu_b_array(int order_min, int order_max, double qq, gsl_sf_mathieu_workspace *work, double result_array[])
{
unsigned int even_order = work->even_order-1, odd_order = work->odd_order,
extra_values = work->extra_values, ii, jj;
double *zz = work->zz, *bb = work->bb;
gsl_matrix_view mat, evec;
gsl_vector_view eval;
gsl_eigen_symmv_workspace *wmat = work->wmat;
if (order_max > work->size || order_max <= order_min || order_min < 0)
{
GSL_ERROR ("invalid range [order_min,order_max]", GSL_EINVAL);
}
/* Fill the period \pi matrix. */
for (ii=0; ii<even_order*even_order; ii++)
zz[ii] = 0.0;
for (ii=0; ii<even_order; ii++)
for (jj=0; jj<even_order; jj++)
{
if (ii == jj)
zz[ii*even_order+jj] = 4*(ii + 1)*(ii + 1);
else if (ii == jj + 1 || ii + 1 == jj)
zz[ii*even_order+jj] = qq;
}
/* Compute (and sort) the eigenvalues of the matrix. */
mat = gsl_matrix_view_array(zz, even_order, even_order);
eval = gsl_vector_subvector(work->eval, 0, even_order);
evec = gsl_matrix_submatrix(work->evec, 0, 0, even_order, even_order);
gsl_eigen_symmv(&mat.matrix, &eval.vector, &evec.matrix, wmat);
gsl_eigen_symmv_sort(&eval.vector, &evec.matrix, GSL_EIGEN_SORT_VAL_ASC);
bb[0] = 0.0;
for (ii=0; ii<even_order-extra_values; ii++)
bb[2*(ii+1)] = gsl_vector_get(&eval.vector, ii);
/* Fill the period 2\pi matrix. */
for (ii=0; ii<odd_order*odd_order; ii++)
zz[ii] = 0.0;
for (ii=0; ii<odd_order; ii++)
for (jj=0; jj<odd_order; jj++)
{
if (ii == jj)
zz[ii*odd_order+jj] = (2*ii + 1)*(2*ii + 1);
else if (ii == jj + 1 || ii + 1 == jj)
zz[ii*odd_order+jj] = qq;
}
zz[0] -= qq;
/* Compute (and sort) the eigenvalues of the matrix. */
mat = gsl_matrix_view_array(zz, odd_order, odd_order);
eval = gsl_vector_subvector(work->eval, 0, odd_order);
evec = gsl_matrix_submatrix(work->evec, 0, 0, odd_order, odd_order);
gsl_eigen_symmv(&mat.matrix, &eval.vector, &evec.matrix, wmat);
gsl_eigen_symmv_sort(&eval.vector, &evec.matrix, GSL_EIGEN_SORT_VAL_ASC);
for (ii=0; ii<odd_order-extra_values; ii++)
bb[2*ii+1] = gsl_vector_get(&eval.vector, ii);
for (ii = order_min ; ii <= order_max ; ii++)
{
result_array[ii - order_min] = bb[ii];
}
return GSL_SUCCESS;
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_mathieu_a(int order, double qq)
{
EVAL_RESULT(gsl_sf_mathieu_a_e(order, qq, &result));
}
double gsl_sf_mathieu_b(int order, double qq)
{
EVAL_RESULT(gsl_sf_mathieu_b_e(order, qq, &result));
}
|