1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
/* specfunc/poch.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
* Copyright (C) 2009 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_log.h>
#include <gsl/gsl_sf_pow_int.h>
#include <gsl/gsl_sf_psi.h>
#include <gsl/gsl_sf_gamma.h>
#include "error.h"
static const double bern[21] = {
0.0 /* no element 0 */,
+0.833333333333333333333333333333333e-01,
-0.138888888888888888888888888888888e-02,
+0.330687830687830687830687830687830e-04,
-0.826719576719576719576719576719576e-06,
+0.208767569878680989792100903212014e-07,
-0.528419013868749318484768220217955e-09,
+0.133825365306846788328269809751291e-10,
-0.338968029632258286683019539124944e-12,
+0.858606205627784456413590545042562e-14,
-0.217486869855806187304151642386591e-15,
+0.550900282836022951520265260890225e-17,
-0.139544646858125233407076862640635e-18,
+0.353470703962946747169322997780379e-20,
-0.895351742703754685040261131811274e-22,
+0.226795245233768306031095073886816e-23,
-0.574472439520264523834847971943400e-24,
+0.145517247561486490186626486727132e-26,
-0.368599494066531017818178247990866e-28,
+0.933673425709504467203255515278562e-30,
-0.236502241570062993455963519636983e-31
};
/* ((a)_x - 1)/x in the "small x" region where
* cancellation must be controlled.
*
* Based on SLATEC DPOCH1().
*/
/*
C When ABS(X) is so small that substantial cancellation will occur if
C the straightforward formula is used, we use an expansion due
C to Fields and discussed by Y. L. Luke, The Special Functions and Their
C Approximations, Vol. 1, Academic Press, 1969, page 34.
C
C The ratio POCH(A,X) = GAMMA(A+X)/GAMMA(A) is written by Luke as
C (A+(X-1)/2)**X * polynomial in (A+(X-1)/2)**(-2) .
C In order to maintain significance in POCH1, we write for positive a
C (A+(X-1)/2)**X = EXP(X*LOG(A+(X-1)/2)) = EXP(Q)
C = 1.0 + Q*EXPREL(Q) .
C Likewise the polynomial is written
C POLY = 1.0 + X*POLY1(A,X) .
C Thus,
C POCH1(A,X) = (POCH(A,X) - 1) / X
C = EXPREL(Q)*(Q/X + Q*POLY1(A,X)) + POLY1(A,X)
C
*/
static
int
pochrel_smallx(const double a, const double x, gsl_sf_result * result)
{
/*
SQTBIG = 1.0D0/SQRT(24.0D0*D1MACH(1))
ALNEPS = LOG(D1MACH(3))
*/
const double SQTBIG = 1.0/(2.0*M_SQRT2*M_SQRT3*GSL_SQRT_DBL_MIN);
const double ALNEPS = GSL_LOG_DBL_EPSILON - M_LN2;
if(x == 0.0) {
return gsl_sf_psi_e(a, result);
}
else {
const double bp = ( (a < -0.5) ? 1.0-a-x : a );
const int incr = ( (bp < 10.0) ? 11.0-bp : 0 );
const double b = bp + incr;
double dpoch1;
gsl_sf_result dexprl;
int stat_dexprl;
int i;
double var = b + 0.5*(x-1.0);
double alnvar = log(var);
double q = x*alnvar;
double poly1 = 0.0;
if(var < SQTBIG) {
const int nterms = (int)(-0.5*ALNEPS/alnvar + 1.0);
const double var2 = (1.0/var)/var;
const double rho = 0.5 * (x + 1.0);
double term = var2;
double gbern[24];
int k, j;
gbern[1] = 1.0;
gbern[2] = -rho/12.0;
poly1 = gbern[2] * term;
if(nterms > 20) {
/* NTERMS IS TOO BIG, MAYBE D1MACH(3) IS BAD */
/* nterms = 20; */
result->val = 0.0;
result->err = 0.0;
GSL_ERROR ("error", GSL_ESANITY);
}
for(k=2; k<=nterms; k++) {
double gbk = 0.0;
for(j=1; j<=k; j++) {
gbk += bern[k-j+1]*gbern[j];
}
gbern[k+1] = -rho*gbk/k;
term *= (2*k-2-x)*(2*k-1-x)*var2;
poly1 += gbern[k+1]*term;
}
}
stat_dexprl = gsl_sf_expm1_e(q, &dexprl);
if(stat_dexprl != GSL_SUCCESS) {
result->val = 0.0;
result->err = 0.0;
return stat_dexprl;
}
dexprl.val = dexprl.val/q;
poly1 *= (x - 1.0);
dpoch1 = dexprl.val * (alnvar + q * poly1) + poly1;
for(i=incr-1; i >= 0; i--) {
/*
C WE HAVE DPOCH1(B,X), BUT BP IS SMALL, SO WE USE BACKWARDS RECURSION
C TO OBTAIN DPOCH1(BP,X).
*/
double binv = 1.0/(bp+i);
dpoch1 = (dpoch1 - binv) / (1.0 + x*binv);
}
if(bp == a) {
result->val = dpoch1;
result->err = 2.0 * GSL_DBL_EPSILON * (fabs(incr) + 1.0) * fabs(result->val);
return GSL_SUCCESS;
}
else {
/*
C WE HAVE DPOCH1(BP,X), BUT A IS LT -0.5. WE THEREFORE USE A
C REFLECTION FORMULA TO OBTAIN DPOCH1(A,X).
*/
double sinpxx = sin(M_PI*x)/x;
double sinpx2 = sin(0.5*M_PI*x);
double t1 = sinpxx/tan(M_PI*b);
double t2 = 2.0*sinpx2*(sinpx2/x);
double trig = t1 - t2;
result->val = dpoch1 * (1.0 + x*trig) + trig;
result->err = (fabs(dpoch1*x) + 1.0) * GSL_DBL_EPSILON * (fabs(t1) + fabs(t2));
result->err += 2.0 * GSL_DBL_EPSILON * (fabs(incr) + 1.0) * fabs(result->val);
return GSL_SUCCESS;
}
}
}
/* Assumes a>0 and a+x>0.
*/
static
int
lnpoch_pos(const double a, const double x, gsl_sf_result * result)
{
double absx = fabs(x);
if(absx > 0.1*a || absx*log(GSL_MAX_DBL(a,2.0)) > 0.1) {
if(a < GSL_SF_GAMMA_XMAX && a+x < GSL_SF_GAMMA_XMAX) {
/* If we can do it by calculating the gamma functions
* directly, then that will be more accurate than
* doing the subtraction of the logs.
*/
gsl_sf_result g1;
gsl_sf_result g2;
gsl_sf_gammainv_e(a, &g1);
gsl_sf_gammainv_e(a+x, &g2);
result->val = -log(g2.val/g1.val);
result->err = g1.err/fabs(g1.val) + g2.err/fabs(g2.val);
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
/* Otherwise we must do the subtraction.
*/
gsl_sf_result lg1;
gsl_sf_result lg2;
int stat_1 = gsl_sf_lngamma_e(a, &lg1);
int stat_2 = gsl_sf_lngamma_e(a+x, &lg2);
result->val = lg2.val - lg1.val;
result->err = lg2.err + lg1.err;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_ERROR_SELECT_2(stat_1, stat_2);
}
}
else if(absx < 0.1*a && a > 15.0) {
/* Be careful about the implied subtraction.
* Note that both a+x and and a must be
* large here since a is not small
* and x is not relatively large.
* So we calculate using Stirling for Log[Gamma(z)].
*
* Log[Gamma(a+x)/Gamma(a)] = x(Log[a]-1) + (x+a-1/2)Log[1+x/a]
* + (1/(1+eps) - 1) / (12 a)
* - (1/(1+eps)^3 - 1) / (360 a^3)
* + (1/(1+eps)^5 - 1) / (1260 a^5)
* - (1/(1+eps)^7 - 1) / (1680 a^7)
* + ...
*/
const double eps = x/a;
const double den = 1.0 + eps;
const double d3 = den*den*den;
const double d5 = d3*den*den;
const double d7 = d5*den*den;
const double c1 = -eps/den;
const double c3 = -eps*(3.0+eps*(3.0+eps))/d3;
const double c5 = -eps*(5.0+eps*(10.0+eps*(10.0+eps*(5.0+eps))))/d5;
const double c7 = -eps*(7.0+eps*(21.0+eps*(35.0+eps*(35.0+eps*(21.0+eps*(7.0+eps))))))/d7;
const double p8 = gsl_sf_pow_int(1.0+eps,8);
const double c8 = 1.0/p8 - 1.0; /* these need not */
const double c9 = 1.0/(p8*(1.0+eps)) - 1.0; /* be very accurate */
const double a4 = a*a*a*a;
const double a6 = a4*a*a;
const double ser_1 = c1 + c3/(30.0*a*a) + c5/(105.0*a4) + c7/(140.0*a6);
const double ser_2 = c8/(99.0*a6*a*a) - 691.0/360360.0 * c9/(a6*a4);
const double ser = (ser_1 + ser_2)/ (12.0*a);
double term1 = x * log(a/M_E);
double term2;
gsl_sf_result ln_1peps;
gsl_sf_log_1plusx_e(eps, &ln_1peps); /* log(1 + x/a) */
term2 = (x + a - 0.5) * ln_1peps.val;
result->val = term1 + term2 + ser;
result->err = GSL_DBL_EPSILON*fabs(term1);
result->err += fabs((x + a - 0.5)*ln_1peps.err);
result->err += fabs(ln_1peps.val) * GSL_DBL_EPSILON * (fabs(x) + fabs(a) + 0.5);
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
gsl_sf_result poch_rel;
int stat_p = pochrel_smallx(a, x, &poch_rel);
double eps = x*poch_rel.val;
int stat_e = gsl_sf_log_1plusx_e(eps, result);
result->err = 2.0 * fabs(x * poch_rel.err / (1.0 + eps));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_ERROR_SELECT_2(stat_e, stat_p);
}
}
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int
gsl_sf_lnpoch_e(const double a, const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(a <= 0.0 || a+x <= 0.0) {
DOMAIN_ERROR(result);
}
else if(x == 0.0) {
result->val = 0.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else {
return lnpoch_pos(a, x, result);
}
}
int
gsl_sf_lnpoch_sgn_e(const double a, const double x,
gsl_sf_result * result, double * sgn)
{
if(x == 0.0) {
*sgn = 1.0;
result->val = 0.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else if(a > 0.0 && a+x > 0.0) {
*sgn = 1.0;
return lnpoch_pos(a, x, result);
}
else if (a <= 0 && a == floor(a)) {
/* Special cases for infinite denominator Gamma(a) */
if (a + x < 0 && x == floor(x)) {
/* Handle the case where both a and a+x are negative integers. */
gsl_sf_result result_pos;
/* Use the reflection formula AMS6.1.17
poch(-a,-x) = (-1)^x (a/(a+x)) 1/poch(a,x) */
int stat = lnpoch_pos (-a, -x, &result_pos);
double f = log (a / (a + x));
double s = (fmod(x, 2) == 0) ? 1 : -1;
result->val = f - result_pos.val;
result->err = result_pos.err + 2.0 * GSL_DBL_EPSILON * f;
*sgn = s;
return stat;
} else if (a + x == 0) {
/* Handle a+x = 0 i.e. Gamma(0)/Gamma(a) */
/* poch (-a,a) == (-1)^a Gamma(a+1) */
int stat = gsl_sf_lngamma_sgn_e (-a + 1, result, sgn);
double s = (fmod(-a, 2) == 0) ? 1 : -1;
*sgn *= s;
return stat;
} else {
/* Handle finite numerator, Gamma(a+x) for a+x != 0 or neg int */
result->val = GSL_NEGINF;
result->err = 0.0;
*sgn = 1;
return GSL_SUCCESS;
}
} else if(a < 0.0 && a+x < 0.0) {
/* Reduce to positive case using reflection.
*/
double sin_1 = sin(M_PI * (1.0 - a));
double sin_2 = sin(M_PI * (1.0 - a - x));
if(sin_1 == 0.0 || sin_2 == 0.0) {
*sgn = 0.0;
DOMAIN_ERROR(result);
}
else {
gsl_sf_result lnp_pos;
int stat_pp = lnpoch_pos(1.0-a, -x, &lnp_pos);
double lnterm = log(fabs(sin_1/sin_2));
result->val = lnterm - lnp_pos.val;
result->err = lnp_pos.err;
result->err += 2.0 * GSL_DBL_EPSILON * (fabs(1.0-a) + fabs(1.0-a-x)) * fabs(lnterm);
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
*sgn = GSL_SIGN(sin_1*sin_2);
return stat_pp;
}
}
else {
/* Evaluate gamma ratio directly.
*/
gsl_sf_result lg_apn;
gsl_sf_result lg_a;
double s_apn, s_a;
int stat_apn = gsl_sf_lngamma_sgn_e(a+x, &lg_apn, &s_apn);
int stat_a = gsl_sf_lngamma_sgn_e(a, &lg_a, &s_a);
if(stat_apn == GSL_SUCCESS && stat_a == GSL_SUCCESS) {
result->val = lg_apn.val - lg_a.val;
result->err = lg_apn.err + lg_a.err;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
*sgn = s_a * s_apn;
return GSL_SUCCESS;
}
else if(stat_apn == GSL_EDOM || stat_a == GSL_EDOM){
*sgn = 0.0;
DOMAIN_ERROR(result);
}
else {
result->val = 0.0;
result->err = 0.0;
*sgn = 0.0;
return GSL_FAILURE;
}
}
}
int
gsl_sf_poch_e(const double a, const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(x == 0.0) {
result->val = 1.0;
result->err = 0.0;
return GSL_SUCCESS;
} else {
gsl_sf_result lnpoch;
double sgn;
int stat_lnpoch = gsl_sf_lnpoch_sgn_e(a, x, &lnpoch, &sgn);
if (lnpoch.val == GSL_NEGINF) {
result->val = 0;
result->err = 0;
return stat_lnpoch;
} else {
int stat_exp = gsl_sf_exp_err_e(lnpoch.val, lnpoch.err, result);
result->val *= sgn;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_ERROR_SELECT_2(stat_exp, stat_lnpoch);
}
}
}
int
gsl_sf_pochrel_e(const double a, const double x, gsl_sf_result * result)
{
const double absx = fabs(x);
const double absa = fabs(a);
/* CHECK_POINTER(result) */
if(absx > 0.1*absa || absx*log(GSL_MAX(absa,2.0)) > 0.1) {
gsl_sf_result lnpoch;
double sgn;
int stat_poch = gsl_sf_lnpoch_sgn_e(a, x, &lnpoch, &sgn);
if(lnpoch.val > GSL_LOG_DBL_MAX) {
OVERFLOW_ERROR(result);
}
else {
const double el = exp(lnpoch.val);
result->val = (sgn*el - 1.0)/x;
result->err = fabs(result->val) * (lnpoch.err + 2.0 * GSL_DBL_EPSILON);
result->err += 2.0 * GSL_DBL_EPSILON * (fabs(sgn*el) + 1.0) / fabs(x);
return stat_poch;
}
}
else {
return pochrel_smallx(a, x, result);
}
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_lnpoch(const double a, const double x)
{
EVAL_RESULT(gsl_sf_lnpoch_e(a, x, &result));
}
double gsl_sf_poch(const double a, const double x)
{
EVAL_RESULT(gsl_sf_poch_e(a, x, &result));
}
double gsl_sf_pochrel(const double a, const double x)
{
EVAL_RESULT(gsl_sf_pochrel_e(a, x, &result));
}
|