1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
|
/* specfunc/psi.c
*
* Copyright (C) 2007 Brian Gough
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2005, 2006 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_zeta.h>
#include <gsl/gsl_sf_psi.h>
#include <gsl/gsl_complex_math.h>
#include <stdio.h>
#include "error.h"
#include "chebyshev.h"
#include "cheb_eval.c"
/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/
/* Chebyshev fit for f(y) = Re(Psi(1+Iy)) + M_EULER - y^2/(1+y^2) - y^2/(2(4+y^2))
* 1 < y < 10
* ==>
* y(x) = (9x + 11)/2, -1 < x < 1
* x(y) = (2y - 11)/9
*
* g(x) := f(y(x))
*/
static double r1py_data[] = {
1.59888328244976954803168395603,
0.67905625353213463845115658455,
-0.068485802980122530009506482524,
-0.005788184183095866792008831182,
0.008511258167108615980419855648,
-0.004042656134699693434334556409,
0.001352328406159402601778462956,
-0.000311646563930660566674525382,
0.000018507563785249135437219139,
0.000028348705427529850296492146,
-0.000019487536014574535567541960,
8.0709788710834469408621587335e-06,
-2.2983564321340518037060346561e-06,
3.0506629599604749843855962658e-07,
1.3042238632418364610774284846e-07,
-1.2308657181048950589464690208e-07,
5.7710855710682427240667414345e-08,
-1.8275559342450963966092636354e-08,
3.1020471300626589420759518930e-09,
6.8989327480593812470039430640e-10,
-8.7182290258923059852334818997e-10,
4.4069147710243611798213548777e-10,
-1.4727311099198535963467200277e-10,
2.7589682523262644748825844248e-11,
4.1871826756975856411554363568e-12,
-6.5673460487260087541400767340e-12,
3.4487900886723214020103638000e-12,
-1.1807251417448690607973794078e-12,
2.3798314343969589258709315574e-13,
2.1663630410818831824259465821e-15
};
static cheb_series r1py_cs = {
r1py_data,
29,
-1,1,
18
};
/* Chebyshev fits from SLATEC code for psi(x)
Series for PSI on the interval 0. to 1.00000D+00
with weighted error 2.03E-17
log weighted error 16.69
significant figures required 16.39
decimal places required 17.37
Series for APSI on the interval 0. to 2.50000D-01
with weighted error 5.54E-17
log weighted error 16.26
significant figures required 14.42
decimal places required 16.86
*/
static double psics_data[23] = {
-.038057080835217922,
.491415393029387130,
-.056815747821244730,
.008357821225914313,
-.001333232857994342,
.000220313287069308,
-.000037040238178456,
.000006283793654854,
-.000001071263908506,
.000000183128394654,
-.000000031353509361,
.000000005372808776,
-.000000000921168141,
.000000000157981265,
-.000000000027098646,
.000000000004648722,
-.000000000000797527,
.000000000000136827,
-.000000000000023475,
.000000000000004027,
-.000000000000000691,
.000000000000000118,
-.000000000000000020
};
static cheb_series psi_cs = {
psics_data,
22,
-1, 1,
17
};
static double apsics_data[16] = {
-.0204749044678185,
-.0101801271534859,
.0000559718725387,
-.0000012917176570,
.0000000572858606,
-.0000000038213539,
.0000000003397434,
-.0000000000374838,
.0000000000048990,
-.0000000000007344,
.0000000000001233,
-.0000000000000228,
.0000000000000045,
-.0000000000000009,
.0000000000000002,
-.0000000000000000
};
static cheb_series apsi_cs = {
apsics_data,
15,
-1, 1,
9
};
#define PSI_TABLE_NMAX 100
static double psi_table[PSI_TABLE_NMAX+1] = {
0.0, /* Infinity */ /* psi(0) */
-M_EULER, /* psi(1) */
0.42278433509846713939348790992, /* ... */
0.92278433509846713939348790992,
1.25611766843180047272682124325,
1.50611766843180047272682124325,
1.70611766843180047272682124325,
1.87278433509846713939348790992,
2.01564147795560999653634505277,
2.14064147795560999653634505277,
2.25175258906672110764745616389,
2.35175258906672110764745616389,
2.44266167997581201673836525479,
2.52599501330914535007169858813,
2.60291809023222227314862166505,
2.67434666166079370172005023648,
2.74101332832746036838671690315,
2.80351332832746036838671690315,
2.86233685773922507426906984432,
2.91789241329478062982462539988,
2.97052399224214905087725697883,
3.02052399224214905087725697883,
3.06814303986119666992487602645,
3.11359758531574212447033057190,
3.15707584618530734186163491973,
3.1987425128519740085283015864,
3.2387425128519740085283015864,
3.2772040513135124700667631249,
3.3142410883505495071038001619,
3.3499553740648352213895144476,
3.3844381326855248765619282407,
3.4177714660188582098952615740,
3.4500295305349872421533260902,
3.4812795305349872421533260902,
3.5115825608380175451836291205,
3.5409943255438998981248055911,
3.5695657541153284695533770196,
3.5973435318931062473311547974,
3.6243705589201332743581818244,
3.6506863483938174848844976139,
3.6763273740348431259101386396,
3.7013273740348431259101386396,
3.7257176179372821503003825420,
3.7495271417468059598241920658,
3.7727829557002943319172153216,
3.7955102284275670591899425943,
3.8177324506497892814121648166,
3.8394715810845718901078169905,
3.8607481768292527411716467777,
3.8815815101625860745049801110,
3.9019896734278921969539597029,
3.9219896734278921969539597029,
3.9415975165651470989147440166,
3.9608282857959163296839747858,
3.9796962103242182164764276160,
3.9982147288427367349949461345,
4.0163965470245549168131279527,
4.0342536898816977739559850956,
4.0517975495308205809735289552,
4.0690389288411654085597358518,
4.0859880813835382899156680552,
4.1026547480502049565823347218,
4.1190481906731557762544658694,
4.1351772229312202923834981274,
4.1510502388042361653993711433,
4.1666752388042361653993711433,
4.1820598541888515500147557587,
4.1972113693403667015299072739,
4.2121367424746950597388624977,
4.2268426248276362362094507330,
4.2413353784508246420065521823,
4.2556210927365389277208378966,
4.2697055997787924488475984600,
4.2835944886676813377364873489,
4.2972931188046676391063503626,
4.3108066323181811526198638761,
4.3241399656515144859531972094,
4.3372978603883565912163551041,
4.3502848733753695782293421171,
4.3631053861958823987421626300,
4.3757636140439836645649474401,
4.3882636140439836645649474401,
4.4006092930563293435772931191,
4.4128044150075488557724150703,
4.4248526077786331931218126607,
4.4367573696833950978837174226,
4.4485220755657480390601880108,
4.4601499825424922251066996387,
4.4716442354160554434975042364,
4.4830078717796918071338678728,
4.4942438268358715824147667492,
4.5053549379469826935258778603,
4.5163439489359936825368668713,
4.5272135141533849868846929582,
4.5379662023254279976373811303,
4.5486045001977684231692960239,
4.5591308159872421073798223397,
4.5695474826539087740464890064,
4.5798567610044242379640147796,
4.5900608426370772991885045755,
4.6001618527380874001986055856
};
#define PSI_1_TABLE_NMAX 100
static double psi_1_table[PSI_1_TABLE_NMAX+1] = {
0.0, /* Infinity */ /* psi(1,0) */
M_PI*M_PI/6.0, /* psi(1,1) */
0.644934066848226436472415, /* ... */
0.394934066848226436472415,
0.2838229557371153253613041,
0.2213229557371153253613041,
0.1813229557371153253613041,
0.1535451779593375475835263,
0.1331370146940314251345467,
0.1175120146940314251345467,
0.1051663356816857461222010,
0.0951663356816857461222010,
0.0869018728717683907503002,
0.0799574284273239463058557,
0.0740402686640103368384001,
0.0689382278476838062261552,
0.0644937834032393617817108,
0.0605875334032393617817108,
0.0571273257907826143768665,
0.0540409060376961946237801,
0.0512708229352031198315363,
0.0487708229352031198315363,
0.0465032492390579951149830,
0.0444371335365786562720078,
0.0425467743683366902984728,
0.0408106632572255791873617,
0.0392106632572255791873617,
0.0377313733163971768204978,
0.0363596312039143235969038,
0.0350841209998326909438426,
0.0338950603577399442137594,
0.0327839492466288331026483,
0.0317433665203020901265817,
0.03076680402030209012658168,
0.02984853037475571730748159,
0.02898347847164153045627052,
0.02816715194102928555831133,
0.02739554700275768062003973,
0.02666508681283803124093089,
0.02597256603721476254286995,
0.02531510384129102815759710,
0.02469010384129102815759710,
0.02409521984367056414807896,
0.02352832641963428296894063,
0.02298749353699501850166102,
0.02247096461137518379091722,
0.02197713745088135663042339,
0.02150454765882086513703965,
0.02105185413233829383780923,
0.02061782635456051606003145,
0.02020133322669712580597065,
0.01980133322669712580597065,
0.01941686571420193164987683,
0.01904704322899483105816086,
0.01869104465298913508094477,
0.01834810912486842177504628,
0.01801753061247172756017024,
0.01769865306145131939690494,
0.01739086605006319997554452,
0.01709360088954001329302371,
0.01680632711763538818529605,
0.01652854933985761040751827,
0.01625980437882562975715546,
0.01599965869724394401313881,
0.01574770606433893015574400,
0.01550356543933893015574400,
0.01526687904880638577704578,
0.01503731063741979257227076,
0.01481454387422086185273411,
0.01459828089844231513993134,
0.01438824099085987447620523,
0.01418415935820681325171544,
0.01398578601958352422176106,
0.01379288478501562298719316,
0.01360523231738567365335942,
0.01342261726990576130858221,
0.01324483949212798353080444,
0.01307170929822216635628920,
0.01290304679189732236910755,
0.01273868124291638877278934,
0.01257845051066194236996928,
0.01242220051066194236996928,
0.01226978472038606978956995,
0.01212106372098095378719041,
0.01197590477193174490346273,
0.01183418141592267460867815,
0.01169577311142440471248438,
0.01156056489076458859566448,
0.01142844704164317229232189,
0.01129931481023821361463594,
0.01117306812421372175754719,
0.01104961133409026496742374,
0.01092885297157366069257770,
0.01081070552355853781923177,
0.01069508522063334415522437,
0.01058191183901270133041676,
0.01047110851491297833872701,
0.01036260157046853389428257,
0.01025632035036012704977199, /* ... */
0.01015219706839427948625679, /* psi(1,99) */
0.01005016666333357139524567 /* psi(1,100) */
};
/* digamma for x both positive and negative; we do both
* cases here because of the way we use even/odd parts
* of the function
*/
static int
psi_x(const double x, gsl_sf_result * result)
{
const double y = fabs(x);
if(x == 0.0 || x == -1.0 || x == -2.0) {
DOMAIN_ERROR(result);
}
else if(y >= 2.0) {
const double t = 8.0/(y*y)-1.0;
gsl_sf_result result_c;
cheb_eval_e(&apsi_cs, t, &result_c);
if(x < 0.0) {
const double s = sin(M_PI*x);
const double c = cos(M_PI*x);
if(fabs(s) < 2.0*GSL_SQRT_DBL_MIN) {
DOMAIN_ERROR(result);
}
else {
result->val = log(y) - 0.5/x + result_c.val - M_PI * c/s;
result->err = M_PI*fabs(x)*GSL_DBL_EPSILON/(s*s);
result->err += result_c.err;
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
}
else {
result->val = log(y) - 0.5/x + result_c.val;
result->err = result_c.err;
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
}
else { /* -2 < x < 2 */
gsl_sf_result result_c;
if(x < -1.0) { /* x = -2 + v */
const double v = x + 2.0;
const double t1 = 1.0/x;
const double t2 = 1.0/(x+1.0);
const double t3 = 1.0/v;
cheb_eval_e(&psi_cs, 2.0*v-1.0, &result_c);
result->val = -(t1 + t2 + t3) + result_c.val;
result->err = GSL_DBL_EPSILON * (fabs(t1) + fabs(x/(t2*t2)) + fabs(x/(t3*t3)));
result->err += result_c.err;
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else if(x < 0.0) { /* x = -1 + v */
const double v = x + 1.0;
const double t1 = 1.0/x;
const double t2 = 1.0/v;
cheb_eval_e(&psi_cs, 2.0*v-1.0, &result_c);
result->val = -(t1 + t2) + result_c.val;
result->err = GSL_DBL_EPSILON * (fabs(t1) + fabs(x/(t2*t2)));
result->err += result_c.err;
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else if(x < 1.0) { /* x = v */
const double t1 = 1.0/x;
cheb_eval_e(&psi_cs, 2.0*x-1.0, &result_c);
result->val = -t1 + result_c.val;
result->err = GSL_DBL_EPSILON * t1;
result->err += result_c.err;
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else { /* x = 1 + v */
const double v = x - 1.0;
return cheb_eval_e(&psi_cs, 2.0*v-1.0, result);
}
}
}
/* psi(z) for large |z| in the right half-plane; [Abramowitz + Stegun, 6.3.18] */
static
gsl_complex
psi_complex_asymp(gsl_complex z)
{
/* coefficients in the asymptotic expansion for large z;
* let w = z^(-2) and write the expression in the form
*
* ln(z) - 1/(2z) - 1/12 w (1 + c1 w + c2 w + c3 w + ... )
*/
static const double c1 = -0.1;
static const double c2 = 1.0/21.0;
static const double c3 = -0.05;
gsl_complex zi = gsl_complex_inverse(z);
gsl_complex w = gsl_complex_mul(zi, zi);
gsl_complex cs;
/* Horner method evaluation of term in parentheses */
gsl_complex sum;
sum = gsl_complex_mul_real(w, c3/c2);
sum = gsl_complex_add_real(sum, 1.0);
sum = gsl_complex_mul_real(sum, c2/c1);
sum = gsl_complex_mul(sum, w);
sum = gsl_complex_add_real(sum, 1.0);
sum = gsl_complex_mul_real(sum, c1);
sum = gsl_complex_mul(sum, w);
sum = gsl_complex_add_real(sum, 1.0);
/* correction added to log(z) */
cs = gsl_complex_mul(sum, w);
cs = gsl_complex_mul_real(cs, -1.0/12.0);
cs = gsl_complex_add(cs, gsl_complex_mul_real(zi, -0.5));
return gsl_complex_add(gsl_complex_log(z), cs);
}
/* psi(z) for complex z in the right half-plane */
static int
psi_complex_rhp(
gsl_complex z,
gsl_sf_result * result_re,
gsl_sf_result * result_im
)
{
int n_recurse = 0;
int i;
gsl_complex a;
if(GSL_REAL(z) == 0.0 && GSL_IMAG(z) == 0.0)
{
result_re->val = 0.0;
result_im->val = 0.0;
result_re->err = 0.0;
result_im->err = 0.0;
return GSL_EDOM;
}
/* compute the number of recurrences to apply */
if(GSL_REAL(z) < 20.0 && fabs(GSL_IMAG(z)) < 20.0)
{
const double sp = sqrt(20.0 + GSL_IMAG(z));
const double sn = sqrt(20.0 - GSL_IMAG(z));
const double rhs = sp*sn - GSL_REAL(z);
if(rhs > 0.0) n_recurse = ceil(rhs);
}
/* compute asymptotic at the large value z + n_recurse */
a = psi_complex_asymp(gsl_complex_add_real(z, n_recurse));
result_re->err = 2.0 * GSL_DBL_EPSILON * fabs(GSL_REAL(a));
result_im->err = 2.0 * GSL_DBL_EPSILON * fabs(GSL_IMAG(a));
/* descend recursively, if necessary */
for(i = n_recurse; i >= 1; --i)
{
gsl_complex zn = gsl_complex_add_real(z, i - 1.0);
gsl_complex zn_inverse = gsl_complex_inverse(zn);
a = gsl_complex_sub(a, zn_inverse);
/* accumulate the error, to catch cancellations */
result_re->err += 2.0 * GSL_DBL_EPSILON * fabs(GSL_REAL(zn_inverse));
result_im->err += 2.0 * GSL_DBL_EPSILON * fabs(GSL_IMAG(zn_inverse));
}
result_re->val = GSL_REAL(a);
result_im->val = GSL_IMAG(a);
result_re->err += 2.0 * GSL_DBL_EPSILON * fabs(result_re->val);
result_im->err += 2.0 * GSL_DBL_EPSILON * fabs(result_im->val);
return GSL_SUCCESS;
}
/* generic polygamma; assumes n >= 0 and x > 0
*/
static int
psi_n_xg0(const int n, const double x, gsl_sf_result * result)
{
if(n == 0) {
return gsl_sf_psi_e(x, result);
}
else {
/* Abramowitz + Stegun 6.4.10 */
gsl_sf_result ln_nf;
gsl_sf_result hzeta;
int stat_hz = gsl_sf_hzeta_e(n+1.0, x, &hzeta);
int stat_nf = gsl_sf_lnfact_e((unsigned int) n, &ln_nf);
int stat_e = gsl_sf_exp_mult_err_e(ln_nf.val, ln_nf.err,
hzeta.val, hzeta.err,
result);
if(GSL_IS_EVEN(n)) result->val = -result->val;
return GSL_ERROR_SELECT_3(stat_e, stat_nf, stat_hz);
}
}
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int gsl_sf_psi_int_e(const int n, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(n <= 0) {
DOMAIN_ERROR(result);
}
else if(n <= PSI_TABLE_NMAX) {
result->val = psi_table[n];
result->err = GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
/* Abramowitz+Stegun 6.3.18 */
const double c2 = -1.0/12.0;
const double c3 = 1.0/120.0;
const double c4 = -1.0/252.0;
const double c5 = 1.0/240.0;
const double ni2 = (1.0/n)*(1.0/n);
const double ser = ni2 * (c2 + ni2 * (c3 + ni2 * (c4 + ni2*c5)));
result->val = log(n) - 0.5/n + ser;
result->err = GSL_DBL_EPSILON * (fabs(log(n)) + fabs(0.5/n) + fabs(ser));
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
}
int gsl_sf_psi_e(const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
return psi_x(x, result);
}
int
gsl_sf_psi_1piy_e(const double y, gsl_sf_result * result)
{
const double ay = fabs(y);
/* CHECK_POINTER(result) */
if(ay > 1000.0) {
/* [Abramowitz+Stegun, 6.3.19] */
const double yi2 = 1.0/(ay*ay);
const double lny = log(ay);
const double sum = yi2 * (1.0/12.0 + 1.0/120.0 * yi2 + 1.0/252.0 * yi2*yi2);
result->val = lny + sum;
result->err = 2.0 * GSL_DBL_EPSILON * (fabs(lny) + fabs(sum));
return GSL_SUCCESS;
}
else if(ay > 10.0) {
/* [Abramowitz+Stegun, 6.3.19] */
const double yi2 = 1.0/(ay*ay);
const double lny = log(ay);
const double sum = yi2 * (1.0/12.0 +
yi2 * (1.0/120.0 +
yi2 * (1.0/252.0 +
yi2 * (1.0/240.0 +
yi2 * (1.0/132.0 + 691.0/32760.0 * yi2)))));
result->val = lny + sum;
result->err = 2.0 * GSL_DBL_EPSILON * (fabs(lny) + fabs(sum));
return GSL_SUCCESS;
}
else if(ay > 1.0){
const double y2 = ay*ay;
const double x = (2.0*ay - 11.0)/9.0;
const double v = y2*(1.0/(1.0+y2) + 0.5/(4.0+y2));
gsl_sf_result result_c;
cheb_eval_e(&r1py_cs, x, &result_c);
result->val = result_c.val - M_EULER + v;
result->err = result_c.err;
result->err += 2.0 * GSL_DBL_EPSILON * (fabs(v) + M_EULER + fabs(result_c.val));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
result->err *= 5.0; /* FIXME: losing a digit somewhere... maybe at x=... ? */
return GSL_SUCCESS;
}
else {
/* [Abramowitz+Stegun, 6.3.17]
*
* -M_EULER + y^2 Sum[1/n 1/(n^2 + y^2), {n,1,M}]
* + Sum[1/n^3, {n,M+1,Infinity}]
* - y^2 Sum[1/n^5, {n,M+1,Infinity}]
* + y^4 Sum[1/n^7, {n,M+1,Infinity}]
* - y^6 Sum[1/n^9, {n,M+1,Infinity}]
* + O(y^8)
*
* We take M=50 for at least 15 digit precision.
*/
const int M = 50;
const double y2 = y*y;
const double c0 = 0.00019603999466879846570;
const double c2 = 3.8426659205114376860e-08;
const double c4 = 1.0041592839497643554e-11;
const double c6 = 2.9516743763500191289e-15;
const double p = c0 + y2 *(-c2 + y2*(c4 - y2*c6));
double sum = 0.0;
double v;
int n;
for(n=1; n<=M; n++) {
sum += 1.0/(n * (n*n + y*y));
}
v = y2 * (sum + p);
result->val = -M_EULER + v;
result->err = GSL_DBL_EPSILON * (M_EULER + fabs(v));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
}
int gsl_sf_psi_1_int_e(const int n, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(n <= 0) {
DOMAIN_ERROR(result);
}
else if(n <= PSI_1_TABLE_NMAX) {
result->val = psi_1_table[n];
result->err = GSL_DBL_EPSILON * result->val;
return GSL_SUCCESS;
}
else {
/* Abramowitz+Stegun 6.4.12
* double-precision for n > 100
*/
const double c0 = -1.0/30.0;
const double c1 = 1.0/42.0;
const double c2 = -1.0/30.0;
const double ni2 = (1.0/n)*(1.0/n);
const double ser = ni2*ni2 * (c0 + ni2*(c1 + c2*ni2));
result->val = (1.0 + 0.5/n + 1.0/(6.0*n*n) + ser) / n;
result->err = GSL_DBL_EPSILON * result->val;
return GSL_SUCCESS;
}
}
int gsl_sf_psi_1_e(const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(x == 0.0 || x == -1.0 || x == -2.0) {
DOMAIN_ERROR(result);
}
else if(x > 0.0)
{
return psi_n_xg0(1, x, result);
}
else if(x > -5.0)
{
/* Abramowitz + Stegun 6.4.6 */
int M = -floor(x);
double fx = x + M;
double sum = 0.0;
int m;
if(fx == 0.0)
DOMAIN_ERROR(result);
for(m = 0; m < M; ++m)
sum += 1.0/((x+m)*(x+m));
{
int stat_psi = psi_n_xg0(1, fx, result);
result->val += sum;
result->err += M * GSL_DBL_EPSILON * sum;
return stat_psi;
}
}
else
{
/* Abramowitz + Stegun 6.4.7 */
const double sin_px = sin(M_PI * x);
const double d = M_PI*M_PI/(sin_px*sin_px);
gsl_sf_result r;
int stat_psi = psi_n_xg0(1, 1.0-x, &r);
result->val = d - r.val;
result->err = r.err + 2.0*GSL_DBL_EPSILON*d;
return stat_psi;
}
}
int gsl_sf_psi_n_e(const int n, const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(n == 0)
{
return gsl_sf_psi_e(x, result);
}
else if(n == 1)
{
return gsl_sf_psi_1_e(x, result);
}
else if(n < 0 || x <= 0.0) {
DOMAIN_ERROR(result);
}
else {
gsl_sf_result ln_nf;
gsl_sf_result hzeta;
int stat_hz = gsl_sf_hzeta_e(n+1.0, x, &hzeta);
int stat_nf = gsl_sf_lnfact_e((unsigned int) n, &ln_nf);
int stat_e = gsl_sf_exp_mult_err_e(ln_nf.val, ln_nf.err,
hzeta.val, hzeta.err,
result);
if(GSL_IS_EVEN(n)) result->val = -result->val;
return GSL_ERROR_SELECT_3(stat_e, stat_nf, stat_hz);
}
}
int
gsl_sf_complex_psi_e(
const double x,
const double y,
gsl_sf_result * result_re,
gsl_sf_result * result_im
)
{
if(x >= 0.0)
{
gsl_complex z = gsl_complex_rect(x, y);
return psi_complex_rhp(z, result_re, result_im);
}
else
{
/* reflection formula [Abramowitz+Stegun, 6.3.7] */
gsl_complex z = gsl_complex_rect(x, y);
gsl_complex omz = gsl_complex_rect(1.0 - x, -y);
gsl_complex zpi = gsl_complex_mul_real(z, M_PI);
gsl_complex cotzpi = gsl_complex_cot(zpi);
int ret_val = psi_complex_rhp(omz, result_re, result_im);
if(GSL_IS_REAL(GSL_REAL(cotzpi)) && GSL_IS_REAL(GSL_IMAG(cotzpi)))
{
result_re->val -= M_PI * GSL_REAL(cotzpi);
result_im->val -= M_PI * GSL_IMAG(cotzpi);
return ret_val;
}
else
{
GSL_ERROR("singularity", GSL_EDOM);
}
}
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_psi_int(const int n)
{
EVAL_RESULT(gsl_sf_psi_int_e(n, &result));
}
double gsl_sf_psi(const double x)
{
EVAL_RESULT(gsl_sf_psi_e(x, &result));
}
double gsl_sf_psi_1piy(const double x)
{
EVAL_RESULT(gsl_sf_psi_1piy_e(x, &result));
}
double gsl_sf_psi_1_int(const int n)
{
EVAL_RESULT(gsl_sf_psi_1_int_e(n, &result));
}
double gsl_sf_psi_1(const double x)
{
EVAL_RESULT(gsl_sf_psi_1_e(x, &result));
}
double gsl_sf_psi_n(const int n, const double x)
{
EVAL_RESULT(gsl_sf_psi_n_e(n, x, &result));
}
|