1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
|
/* specfunc/trig.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_log.h>
#include <gsl/gsl_sf_trig.h>
#include "error.h"
#include "chebyshev.h"
#include "cheb_eval.c"
/* sinh(x) series
* double-precision for |x| < 1.0
*/
inline
static
int
sinh_series(const double x, double * result)
{
const double y = x*x;
const double c0 = 1.0/6.0;
const double c1 = 1.0/120.0;
const double c2 = 1.0/5040.0;
const double c3 = 1.0/362880.0;
const double c4 = 1.0/39916800.0;
const double c5 = 1.0/6227020800.0;
const double c6 = 1.0/1307674368000.0;
const double c7 = 1.0/355687428096000.0;
*result = x*(1.0 + y*(c0+y*(c1+y*(c2+y*(c3+y*(c4+y*(c5+y*(c6+y*c7))))))));
return GSL_SUCCESS;
}
/* cosh(x)-1 series
* double-precision for |x| < 1.0
*/
inline
static
int
cosh_m1_series(const double x, double * result)
{
const double y = x*x;
const double c0 = 0.5;
const double c1 = 1.0/24.0;
const double c2 = 1.0/720.0;
const double c3 = 1.0/40320.0;
const double c4 = 1.0/3628800.0;
const double c5 = 1.0/479001600.0;
const double c6 = 1.0/87178291200.0;
const double c7 = 1.0/20922789888000.0;
const double c8 = 1.0/6402373705728000.0;
*result = y*(c0+y*(c1+y*(c2+y*(c3+y*(c4+y*(c5+y*(c6+y*(c7+y*c8))))))));
return GSL_SUCCESS;
}
/* Chebyshev expansion for f(t) = sinc((t+1)/2), -1 < t < 1
*/
static double sinc_data[17] = {
1.133648177811747875422,
-0.532677564732557348781,
-0.068293048346633177859,
0.033403684226353715020,
0.001485679893925747818,
-0.000734421305768455295,
-0.000016837282388837229,
0.000008359950146618018,
0.000000117382095601192,
-0.000000058413665922724,
-0.000000000554763755743,
0.000000000276434190426,
0.000000000001895374892,
-0.000000000000945237101,
-0.000000000000004900690,
0.000000000000002445383,
0.000000000000000009925
};
static cheb_series sinc_cs = {
sinc_data,
16,
-1, 1,
10
};
/* Chebyshev expansion for f(t) = g((t+1)Pi/8), -1<t<1
* g(x) = (sin(x)/x - 1)/(x*x)
*/
static double sin_data[12] = {
-0.3295190160663511504173,
0.0025374284671667991990,
0.0006261928782647355874,
-4.6495547521854042157541e-06,
-5.6917531549379706526677e-07,
3.7283335140973803627866e-09,
3.0267376484747473727186e-10,
-1.7400875016436622322022e-12,
-1.0554678305790849834462e-13,
5.3701981409132410797062e-16,
2.5984137983099020336115e-17,
-1.1821555255364833468288e-19
};
static cheb_series sin_cs = {
sin_data,
11,
-1, 1,
11
};
/* Chebyshev expansion for f(t) = g((t+1)Pi/8), -1<t<1
* g(x) = (2(cos(x) - 1)/(x^2) + 1) / x^2
*/
static double cos_data[11] = {
0.165391825637921473505668118136,
-0.00084852883845000173671196530195,
-0.000210086507222940730213625768083,
1.16582269619760204299639757584e-6,
1.43319375856259870334412701165e-7,
-7.4770883429007141617951330184e-10,
-6.0969994944584252706997438007e-11,
2.90748249201909353949854872638e-13,
1.77126739876261435667156490461e-14,
-7.6896421502815579078577263149e-17,
-3.7363121133079412079201377318e-18
};
static cheb_series cos_cs = {
cos_data,
10,
-1, 1,
10
};
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
/* I would have prefered just using the library sin() function.
* But after some experimentation I decided that there was
* no good way to understand the error; library sin() is just a black box.
* So we have to roll our own.
*/
int
gsl_sf_sin_e(double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
{
const double P1 = 7.85398125648498535156e-1;
const double P2 = 3.77489470793079817668e-8;
const double P3 = 2.69515142907905952645e-15;
const double sgn_x = GSL_SIGN(x);
const double abs_x = fabs(x);
if(abs_x < GSL_ROOT4_DBL_EPSILON) {
const double x2 = x*x;
result->val = x * (1.0 - x2/6.0);
result->err = fabs(x*x2*x2 / 100.0);
return GSL_SUCCESS;
}
else {
double sgn_result = sgn_x;
double y = floor(abs_x/(0.25*M_PI));
int octant = y - ldexp(floor(ldexp(y,-3)),3);
int stat_cs;
double z;
if(GSL_IS_ODD(octant)) {
octant += 1;
octant &= 07;
y += 1.0;
}
if(octant > 3) {
octant -= 4;
sgn_result = -sgn_result;
}
z = ((abs_x - y * P1) - y * P2) - y * P3;
if(octant == 0) {
gsl_sf_result sin_cs_result;
const double t = 8.0*fabs(z)/M_PI - 1.0;
stat_cs = cheb_eval_e(&sin_cs, t, &sin_cs_result);
result->val = z * (1.0 + z*z * sin_cs_result.val);
}
else { /* octant == 2 */
gsl_sf_result cos_cs_result;
const double t = 8.0*fabs(z)/M_PI - 1.0;
stat_cs = cheb_eval_e(&cos_cs, t, &cos_cs_result);
result->val = 1.0 - 0.5*z*z * (1.0 - z*z * cos_cs_result.val);
}
result->val *= sgn_result;
if(abs_x > 1.0/GSL_DBL_EPSILON) {
result->err = fabs(result->val);
}
else if(abs_x > 100.0/GSL_SQRT_DBL_EPSILON) {
result->err = 2.0 * abs_x * GSL_DBL_EPSILON * fabs(result->val);
}
else if(abs_x > 0.1/GSL_SQRT_DBL_EPSILON) {
result->err = 2.0 * GSL_SQRT_DBL_EPSILON * fabs(result->val);
}
else {
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
}
return stat_cs;
}
}
}
int
gsl_sf_cos_e(double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
{
const double P1 = 7.85398125648498535156e-1;
const double P2 = 3.77489470793079817668e-8;
const double P3 = 2.69515142907905952645e-15;
const double abs_x = fabs(x);
if(abs_x < GSL_ROOT4_DBL_EPSILON) {
const double x2 = x*x;
result->val = 1.0 - 0.5*x2;
result->err = fabs(x2*x2/12.0);
return GSL_SUCCESS;
}
else {
double sgn_result = 1.0;
double y = floor(abs_x/(0.25*M_PI));
int octant = y - ldexp(floor(ldexp(y,-3)),3);
int stat_cs;
double z;
if(GSL_IS_ODD(octant)) {
octant += 1;
octant &= 07;
y += 1.0;
}
if(octant > 3) {
octant -= 4;
sgn_result = -sgn_result;
}
if(octant > 1) {
sgn_result = -sgn_result;
}
z = ((abs_x - y * P1) - y * P2) - y * P3;
if(octant == 0) {
gsl_sf_result cos_cs_result;
const double t = 8.0*fabs(z)/M_PI - 1.0;
stat_cs = cheb_eval_e(&cos_cs, t, &cos_cs_result);
result->val = 1.0 - 0.5*z*z * (1.0 - z*z * cos_cs_result.val);
}
else { /* octant == 2 */
gsl_sf_result sin_cs_result;
const double t = 8.0*fabs(z)/M_PI - 1.0;
stat_cs = cheb_eval_e(&sin_cs, t, &sin_cs_result);
result->val = z * (1.0 + z*z * sin_cs_result.val);
}
result->val *= sgn_result;
if(abs_x > 1.0/GSL_DBL_EPSILON) {
result->err = fabs(result->val);
}
else if(abs_x > 100.0/GSL_SQRT_DBL_EPSILON) {
result->err = 2.0 * abs_x * GSL_DBL_EPSILON * fabs(result->val);
}
else if(abs_x > 0.1/GSL_SQRT_DBL_EPSILON) {
result->err = 2.0 * GSL_SQRT_DBL_EPSILON * fabs(result->val);
}
else {
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
}
return stat_cs;
}
}
}
int
gsl_sf_hypot_e(const double x, const double y, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(x == 0.0 && y == 0.0) {
result->val = 0.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else {
const double a = fabs(x);
const double b = fabs(y);
const double min = GSL_MIN_DBL(a,b);
const double max = GSL_MAX_DBL(a,b);
const double rat = min/max;
const double root_term = sqrt(1.0 + rat*rat);
if(max < GSL_DBL_MAX/root_term) {
result->val = max * root_term;
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
OVERFLOW_ERROR(result);
}
}
}
int
gsl_sf_complex_sin_e(const double zr, const double zi,
gsl_sf_result * szr, gsl_sf_result * szi)
{
/* CHECK_POINTER(szr) */
/* CHECK_POINTER(szi) */
if(fabs(zi) < 1.0) {
double ch_m1, sh;
sinh_series(zi, &sh);
cosh_m1_series(zi, &ch_m1);
szr->val = sin(zr)*(ch_m1 + 1.0);
szi->val = cos(zr)*sh;
szr->err = 2.0 * GSL_DBL_EPSILON * fabs(szr->val);
szi->err = 2.0 * GSL_DBL_EPSILON * fabs(szi->val);
return GSL_SUCCESS;
}
else if(fabs(zi) < GSL_LOG_DBL_MAX) {
double ex = exp(zi);
double ch = 0.5*(ex+1.0/ex);
double sh = 0.5*(ex-1.0/ex);
szr->val = sin(zr)*ch;
szi->val = cos(zr)*sh;
szr->err = 2.0 * GSL_DBL_EPSILON * fabs(szr->val);
szi->err = 2.0 * GSL_DBL_EPSILON * fabs(szi->val);
return GSL_SUCCESS;
}
else {
OVERFLOW_ERROR_2(szr, szi);
}
}
int
gsl_sf_complex_cos_e(const double zr, const double zi,
gsl_sf_result * czr, gsl_sf_result * czi)
{
/* CHECK_POINTER(czr) */
/* CHECK_POINTER(czi) */
if(fabs(zi) < 1.0) {
double ch_m1, sh;
sinh_series(zi, &sh);
cosh_m1_series(zi, &ch_m1);
czr->val = cos(zr)*(ch_m1 + 1.0);
czi->val = -sin(zr)*sh;
czr->err = 2.0 * GSL_DBL_EPSILON * fabs(czr->val);
czi->err = 2.0 * GSL_DBL_EPSILON * fabs(czi->val);
return GSL_SUCCESS;
}
else if(fabs(zi) < GSL_LOG_DBL_MAX) {
double ex = exp(zi);
double ch = 0.5*(ex+1.0/ex);
double sh = 0.5*(ex-1.0/ex);
czr->val = cos(zr)*ch;
czi->val = -sin(zr)*sh;
czr->err = 2.0 * GSL_DBL_EPSILON * fabs(czr->val);
czi->err = 2.0 * GSL_DBL_EPSILON * fabs(czi->val);
return GSL_SUCCESS;
}
else {
OVERFLOW_ERROR_2(czr,czi);
}
}
int
gsl_sf_complex_logsin_e(const double zr, const double zi,
gsl_sf_result * lszr, gsl_sf_result * lszi)
{
/* CHECK_POINTER(lszr) */
/* CHECK_POINTER(lszi) */
if(zi > 60.0) {
lszr->val = -M_LN2 + zi;
lszi->val = 0.5*M_PI - zr;
lszr->err = 2.0 * GSL_DBL_EPSILON * fabs(lszr->val);
lszi->err = 2.0 * GSL_DBL_EPSILON * fabs(lszi->val);
}
else if(zi < -60.0) {
lszr->val = -M_LN2 - zi;
lszi->val = -0.5*M_PI + zr;
lszr->err = 2.0 * GSL_DBL_EPSILON * fabs(lszr->val);
lszi->err = 2.0 * GSL_DBL_EPSILON * fabs(lszi->val);
}
else {
gsl_sf_result sin_r, sin_i;
int status;
gsl_sf_complex_sin_e(zr, zi, &sin_r, &sin_i); /* ok by construction */
status = gsl_sf_complex_log_e(sin_r.val, sin_i.val, lszr, lszi);
if(status == GSL_EDOM) {
DOMAIN_ERROR_2(lszr, lszi);
}
}
return gsl_sf_angle_restrict_symm_e(&(lszi->val));
}
int
gsl_sf_lnsinh_e(const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(x <= 0.0) {
DOMAIN_ERROR(result);
}
else if(fabs(x) < 1.0) {
double eps;
sinh_series(x, &eps);
result->val = log(eps);
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else if(x < -0.5*GSL_LOG_DBL_EPSILON) {
result->val = x + log(0.5*(1.0 - exp(-2.0*x)));
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
result->val = -M_LN2 + x;
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
}
int gsl_sf_lncosh_e(const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(fabs(x) < 1.0) {
double eps;
cosh_m1_series(x, &eps);
return gsl_sf_log_1plusx_e(eps, result);
}
else if(fabs(x) < -0.5*GSL_LOG_DBL_EPSILON) {
result->val = fabs(x) + log(0.5*(1.0 + exp(-2.0*fabs(x))));
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
result->val = -M_LN2 + fabs(x);
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
}
/*
inline int gsl_sf_sincos_e(const double theta, double * s, double * c)
{
double tan_half = tan(0.5 * theta);
double den = 1. + tan_half*tan_half;
double cos_theta = (1.0 - tan_half*tan_half) / den;
double sin_theta = 2.0 * tan_half / den;
}
*/
int
gsl_sf_polar_to_rect(const double r, const double theta,
gsl_sf_result * x, gsl_sf_result * y)
{
double t = theta;
int status = gsl_sf_angle_restrict_symm_e(&t);
double c = cos(t);
double s = sin(t);
x->val = r * cos(t);
y->val = r * sin(t);
x->err = r * fabs(s * GSL_DBL_EPSILON * t);
x->err += 2.0 * GSL_DBL_EPSILON * fabs(x->val);
y->err = r * fabs(c * GSL_DBL_EPSILON * t);
y->err += 2.0 * GSL_DBL_EPSILON * fabs(y->val);
return status;
}
int
gsl_sf_rect_to_polar(const double x, const double y,
gsl_sf_result * r, gsl_sf_result * theta)
{
int stat_h = gsl_sf_hypot_e(x, y, r);
if(r->val > 0.0) {
theta->val = atan2(y, x);
theta->err = 2.0 * GSL_DBL_EPSILON * fabs(theta->val);
return stat_h;
}
else {
DOMAIN_ERROR(theta);
}
}
int gsl_sf_angle_restrict_symm_err_e(const double theta, gsl_sf_result * result)
{
/* synthetic extended precision constants */
const double P1 = 4 * 7.8539812564849853515625e-01;
const double P2 = 4 * 3.7748947079307981766760e-08;
const double P3 = 4 * 2.6951514290790594840552e-15;
const double TwoPi = 2*(P1 + P2 + P3);
const double y = GSL_SIGN(theta) * 2 * floor(fabs(theta)/TwoPi);
double r = ((theta - y*P1) - y*P2) - y*P3;
if(r > M_PI) { r = (((r-2*P1)-2*P2)-2*P3); } /* r-TwoPi */
else if (r < -M_PI) r = (((r+2*P1)+2*P2)+2*P3); /* r+TwoPi */
result->val = r;
if(fabs(theta) > 0.0625/GSL_DBL_EPSILON) {
result->val = GSL_NAN;
result->err = GSL_NAN;
GSL_ERROR ("error", GSL_ELOSS);
}
else if(fabs(theta) > 0.0625/GSL_SQRT_DBL_EPSILON) {
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val - theta);
return GSL_SUCCESS;
}
else {
double delta = fabs(result->val - theta);
result->err = 2.0 * GSL_DBL_EPSILON * ((delta < M_PI) ? delta : M_PI);
return GSL_SUCCESS;
}
}
int gsl_sf_angle_restrict_pos_err_e(const double theta, gsl_sf_result * result)
{
/* synthetic extended precision constants */
const double P1 = 4 * 7.85398125648498535156e-01;
const double P2 = 4 * 3.77489470793079817668e-08;
const double P3 = 4 * 2.69515142907905952645e-15;
const double TwoPi = 2*(P1 + P2 + P3);
const double y = 2*floor(theta/TwoPi);
double r = ((theta - y*P1) - y*P2) - y*P3;
if(r > TwoPi) {r = (((r-2*P1)-2*P2)-2*P3); } /* r-TwoPi */
else if (r < 0) { /* may happen due to FP rounding */
r = (((r+2*P1)+2*P2)+2*P3); /* r+TwoPi */
}
result->val = r;
if(fabs(theta) > 0.0625/GSL_DBL_EPSILON) {
result->val = GSL_NAN;
result->err = fabs(result->val);
GSL_ERROR ("error", GSL_ELOSS);
}
else if(fabs(theta) > 0.0625/GSL_SQRT_DBL_EPSILON) {
result->err = GSL_DBL_EPSILON * fabs(result->val - theta);
return GSL_SUCCESS;
}
else {
double delta = fabs(result->val - theta);
result->err = 2.0 * GSL_DBL_EPSILON * ((delta < M_PI) ? delta : M_PI);
return GSL_SUCCESS;
}
}
int gsl_sf_angle_restrict_symm_e(double * theta)
{
gsl_sf_result r;
int stat = gsl_sf_angle_restrict_symm_err_e(*theta, &r);
*theta = r.val;
return stat;
}
int gsl_sf_angle_restrict_pos_e(double * theta)
{
gsl_sf_result r;
int stat = gsl_sf_angle_restrict_pos_err_e(*theta, &r);
*theta = r.val;
return stat;
}
int gsl_sf_sin_err_e(const double x, const double dx, gsl_sf_result * result)
{
int stat_s = gsl_sf_sin_e(x, result);
result->err += fabs(cos(x) * dx);
result->err += GSL_DBL_EPSILON * fabs(result->val);
return stat_s;
}
int gsl_sf_cos_err_e(const double x, const double dx, gsl_sf_result * result)
{
int stat_c = gsl_sf_cos_e(x, result);
result->err += fabs(sin(x) * dx);
result->err += GSL_DBL_EPSILON * fabs(result->val);
return stat_c;
}
#if 0
int
gsl_sf_sin_pi_x_e(const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(-100.0 < x && x < 100.0) {
result->val = sin(M_PI * x) / (M_PI * x);
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
const double N = floor(x + 0.5);
const double f = x - N;
if(N < INT_MAX && N > INT_MIN) {
/* Make it an integer if we can. Saves another
* call to floor().
*/
const int intN = (int)N;
const double sign = ( GSL_IS_ODD(intN) ? -1.0 : 1.0 );
result->val = sign * sin(M_PI * f);
result->err = GSL_DBL_EPSILON * fabs(result->val);
}
else if(N > 2.0/GSL_DBL_EPSILON || N < -2.0/GSL_DBL_EPSILON) {
/* All integer-valued floating point numbers
* bigger than 2/eps=2^53 are actually even.
*/
result->val = 0.0;
result->err = 0.0;
}
else {
const double resN = N - 2.0*floor(0.5*N); /* 0 for even N, 1 for odd N */
const double sign = ( fabs(resN) > 0.5 ? -1.0 : 1.0 );
result->val = sign * sin(M_PI*f);
result->err = GSL_DBL_EPSILON * fabs(result->val);
}
return GSL_SUCCESS;
}
}
#endif
int gsl_sf_sinc_e(double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
{
const double ax = fabs(x);
if(ax < 0.8) {
/* Do not go to the limit of the fit since
* there is a zero there and the Chebyshev
* accuracy will go to zero.
*/
return cheb_eval_e(&sinc_cs, 2.0*ax-1.0, result);
}
else if(ax < 100.0) {
/* Small arguments are no problem.
* We trust the library sin() to
* roughly machine precision.
*/
result->val = sin(M_PI * ax)/(M_PI * ax);
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
/* Large arguments must be handled separately.
*/
const double r = M_PI*ax;
gsl_sf_result s;
int stat_s = gsl_sf_sin_e(r, &s);
result->val = s.val/r;
result->err = s.err/r + 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return stat_s;
}
}
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_sin(const double x)
{
EVAL_RESULT(gsl_sf_sin_e(x, &result));
}
double gsl_sf_cos(const double x)
{
EVAL_RESULT(gsl_sf_cos_e(x, &result));
}
double gsl_sf_hypot(const double x, const double y)
{
EVAL_RESULT(gsl_sf_hypot_e(x, y, &result));
}
double gsl_sf_lnsinh(const double x)
{
EVAL_RESULT(gsl_sf_lnsinh_e(x, &result));
}
double gsl_sf_lncosh(const double x)
{
EVAL_RESULT(gsl_sf_lncosh_e(x, &result));
}
double gsl_sf_angle_restrict_symm(const double theta)
{
double result = theta;
EVAL_DOUBLE(gsl_sf_angle_restrict_symm_e(&result));
}
double gsl_sf_angle_restrict_pos(const double theta)
{
double result = theta;
EVAL_DOUBLE(gsl_sf_angle_restrict_pos_e(&result));
}
#if 0
double gsl_sf_sin_pi_x(const double x)
{
EVAL_RESULT(gsl_sf_sin_pi_x_e(x, &result));
}
#endif
double gsl_sf_sinc(const double x)
{
EVAL_RESULT(gsl_sf_sinc_e(x, &result));
}
|