1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
/* gmres.c
*
* Copyright (C) 2014 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_spmatrix.h>
#include <gsl/gsl_spblas.h>
#include <gsl/gsl_splinalg.h>
/*
* The code in this module is based on the Householder GMRES
* algorithm described in
*
* [1] H. F. Walker, Implementation of the GMRES method using
* Householder transformations, SIAM J. Sci. Stat. Comput.
* 9(1), 1988.
*
* [2] Y. Saad, Iterative methods for sparse linear systems,
* 2nd edition, SIAM, 2003.
*/
typedef struct
{
size_t n; /* size of linear system */
size_t m; /* dimension of Krylov subspace K_m */
gsl_vector *r; /* residual vector r = b - A*x */
gsl_matrix *H; /* Hessenberg matrix n-by-(m+1) */
gsl_vector *tau; /* householder scalars */
gsl_vector *y; /* least squares rhs and solution vector */
double *c; /* Givens rotations */
double *s;
double normr; /* residual norm ||r|| */
} gmres_state_t;
static void gmres_free(void *vstate);
static int gmres_iterate(const gsl_spmatrix *A, const gsl_vector *b,
const double tol, gsl_vector *x, void *vstate);
/*
gmres_alloc()
Allocate a GMRES workspace for solving an n-by-n system A x = b
Inputs: n - size of system
krylov_m - size of Krylov subspace (ie: number of inner iterations)
if this parameter is 0, the value GSL_MIN(n,10) is
used
Return: pointer to workspace
*/
static void *
gmres_alloc(const size_t n, const size_t m)
{
gmres_state_t *state;
if (n == 0)
{
GSL_ERROR_NULL("matrix dimension n must be a positive integer",
GSL_EINVAL);
}
state = calloc(1, sizeof(gmres_state_t));
if (!state)
{
GSL_ERROR_NULL("failed to allocate gmres state", GSL_ENOMEM);
}
state->n = n;
/* compute size of Krylov subspace */
if (m == 0)
state->m = GSL_MIN(n, 10);
else
state->m = GSL_MIN(n, m);
state->r = gsl_vector_alloc(n);
if (!state->r)
{
gmres_free(state);
GSL_ERROR_NULL("failed to allocate r vector", GSL_ENOMEM);
}
state->H = gsl_matrix_alloc(n, state->m + 1);
if (!state->H)
{
gmres_free(state);
GSL_ERROR_NULL("failed to allocate H matrix", GSL_ENOMEM);
}
state->tau = gsl_vector_alloc(state->m + 1);
if (!state->tau)
{
gmres_free(state);
GSL_ERROR_NULL("failed to allocate tau vector", GSL_ENOMEM);
}
state->y = gsl_vector_alloc(state->m + 1);
if (!state->y)
{
gmres_free(state);
GSL_ERROR_NULL("failed to allocate y vector", GSL_ENOMEM);
}
state->c = malloc(state->m * sizeof(double));
state->s = malloc(state->m * sizeof(double));
if (!state->c || !state->s)
{
gmres_free(state);
GSL_ERROR_NULL("failed to allocate Givens vectors", GSL_ENOMEM);
}
state->normr = 0.0;
return state;
} /* gmres_alloc() */
static void
gmres_free(void *vstate)
{
gmres_state_t *state = (gmres_state_t *) vstate;
if (state->r)
gsl_vector_free(state->r);
if (state->H)
gsl_matrix_free(state->H);
if (state->tau)
gsl_vector_free(state->tau);
if (state->y)
gsl_vector_free(state->y);
if (state->c)
free(state->c);
if (state->s)
free(state->s);
free(state);
} /* gmres_free() */
/*
gmres_iterate()
Solve A*x = b using GMRES algorithm
Inputs: A - sparse square matrix
b - right hand side vector
tol - stopping tolerance (see below)
x - (input/output) on input, initial estimate x_0;
on output, solution vector
work - workspace
Return:
GSL_SUCCESS if converged to solution (solution stored in x). In
this case the following will be true:
||b - A*x|| <= tol * ||b||
GSL_CONTINUE if not yet converged; in this case x contains the
most recent solution vector and calling this function more times
with the input x could result in convergence (ie: restarted GMRES)
Notes:
1) Based on algorithm 2.2 of (Walker, 1998 [1]) and algorithm 6.10 of
(Saad, 2003 [2])
2) On output, work->normr contains ||b - A*x||
*/
static int
gmres_iterate(const gsl_spmatrix *A, const gsl_vector *b,
const double tol, gsl_vector *x,
void *vstate)
{
const size_t N = A->size1;
gmres_state_t *state = (gmres_state_t *) vstate;
if (N != A->size2)
{
GSL_ERROR("matrix must be square", GSL_ENOTSQR);
}
else if (N != b->size)
{
GSL_ERROR("matrix does not match right hand side", GSL_EBADLEN);
}
else if (N != x->size)
{
GSL_ERROR("matrix does not match solution vector", GSL_EBADLEN);
}
else if (N != state->n)
{
GSL_ERROR("matrix does not match workspace", GSL_EBADLEN);
}
else
{
int status = GSL_SUCCESS;
const size_t maxit = state->m;
const double normb = gsl_blas_dnrm2(b); /* ||b|| */
const double reltol = tol * normb; /* tol*||b|| */
double normr; /* ||r|| */
size_t m, k;
double tau; /* householder scalar */
gsl_matrix *H = state->H; /* Hessenberg matrix */
gsl_vector *r = state->r; /* residual vector */
gsl_vector *w = state->y; /* least squares RHS */
gsl_matrix_view Rm; /* R_m = H(1:m,2:m+1) */
gsl_vector_view ym; /* y(1:m) */
gsl_vector_view h0 = gsl_matrix_column(H, 0);
/*
* The Hessenberg matrix will have the following structure:
*
* H = [ ||r_0|| | v_1 v_2 ... v_m ]
* [ u_1 | u_2 u_3 ... u_{m+1} ]
*
* where v_j are the orthonormal vectors spanning the Krylov
* subpsace of length j + 1 and u_{j+1} are the householder
* vectors of length n - j - 1.
* In fact, u_{j+1} has length n - j since u_{j+1}[0] = 1,
* but this 1 is not stored.
*/
gsl_matrix_set_zero(H);
/* Step 1a: compute r = b - A*x_0 */
gsl_vector_memcpy(r, b);
gsl_spblas_dgemv(CblasNoTrans, -1.0, A, x, 1.0, r);
/* Step 1b */
gsl_vector_memcpy(&h0.vector, r);
tau = gsl_linalg_householder_transform(&h0.vector);
/* store tau_1 */
gsl_vector_set(state->tau, 0, tau);
/* initialize w (stored in state->y) */
gsl_vector_set_zero(w);
gsl_vector_set(w, 0, gsl_vector_get(&h0.vector, 0));
for (m = 1; m <= maxit; ++m)
{
size_t j = m - 1; /* C indexing */
double c, s; /* Givens rotation */
/* v_m */
gsl_vector_view vm = gsl_matrix_column(H, m);
/* v_m(m:end) */
gsl_vector_view vv = gsl_vector_subvector(&vm.vector, j, N - j);
/* householder vector u_m for projection P_m */
gsl_vector_view um = gsl_matrix_subcolumn(H, j, j, N - j);
/* Step 2a: form v_m = P_m e_m = e_m - tau_m w_m */
gsl_vector_set_zero(&vm.vector);
gsl_vector_memcpy(&vv.vector, &um.vector);
tau = gsl_vector_get(state->tau, j); /* tau_m */
gsl_vector_scale(&vv.vector, -tau);
gsl_vector_set(&vv.vector, 0, 1.0 - tau);
/* Step 2a: v_m <- P_1 P_2 ... P_{m-1} v_m */
for (k = j; k > 0 && k--; )
{
gsl_vector_view uk =
gsl_matrix_subcolumn(H, k, k, N - k);
gsl_vector_view vk =
gsl_vector_subvector(&vm.vector, k, N - k);
tau = gsl_vector_get(state->tau, k);
gsl_linalg_householder_hv(tau, &uk.vector, &vk.vector);
}
/* Step 2a: v_m <- A*v_m */
gsl_spblas_dgemv(CblasNoTrans, 1.0, A, &vm.vector, 0.0, r);
gsl_vector_memcpy(&vm.vector, r);
/* Step 2a: v_m <- P_m ... P_1 v_m */
for (k = 0; k <= j; ++k)
{
gsl_vector_view uk = gsl_matrix_subcolumn(H, k, k, N - k);
gsl_vector_view vk = gsl_vector_subvector(&vm.vector, k, N - k);
tau = gsl_vector_get(state->tau, k);
gsl_linalg_householder_hv(tau, &uk.vector, &vk.vector);
}
/* Steps 2c,2d: find P_{m+1} and set v_m <- P_{m+1} v_m */
if (m < N)
{
/* householder vector u_{m+1} for projection P_{m+1} */
gsl_vector_view ump1 = gsl_matrix_subcolumn(H, m, m, N - m);
tau = gsl_linalg_householder_transform(&ump1.vector);
gsl_vector_set(state->tau, j + 1, tau);
}
/* Step 2e: v_m <- J_{m-1} ... J_1 v_m */
for (k = 0; k < j; ++k)
{
gsl_linalg_givens_gv(&vm.vector, k, k + 1,
state->c[k], state->s[k]);
}
if (m < N)
{
/* Step 2g: find givens rotation J_m for v_m(m:m+1) */
gsl_linalg_givens(gsl_vector_get(&vm.vector, j),
gsl_vector_get(&vm.vector, j + 1),
&c, &s);
/* store givens rotation for later use */
state->c[j] = c;
state->s[j] = s;
/* Step 2h: v_m <- J_m v_m */
gsl_linalg_givens_gv(&vm.vector, j, j + 1, c, s);
/* Step 2h: w <- J_m w */
gsl_linalg_givens_gv(w, j, j + 1, c, s);
}
/*
* Step 2i: R_m = [ R_{m-1}, v_m ] - already taken care
* of due to our memory storage scheme
*/
/* Step 2j: check residual w_{m+1} for convergence */
normr = fabs(gsl_vector_get(w, j + 1));
if (normr <= reltol)
{
/*
* method has converged, break out of loop to compute
* update to solution vector x
*/
break;
}
}
/*
* At this point, we have either converged to a solution or
* completed all maxit iterations. In either case, compute
* an update to the solution vector x and test again for
* convergence.
*/
/* rewind m if we exceeded maxit iterations */
if (m > maxit)
m--;
/* Step 3a: solve triangular system R_m y_m = w, in place */
Rm = gsl_matrix_submatrix(H, 0, 1, m, m);
ym = gsl_vector_subvector(w, 0, m);
gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit,
&Rm.matrix, &ym.vector);
/*
* Step 3b: update solution vector x; the loop below
* uses a different but equivalent formulation from
* Saad, algorithm 6.10, step 14; store Krylov projection
* V_m y_m in 'r'
*/
gsl_vector_set_zero(r);
for (k = m; k > 0 && k--; )
{
double ymk = gsl_vector_get(&ym.vector, k);
gsl_vector_view uk = gsl_matrix_subcolumn(H, k, k, N - k);
gsl_vector_view rk = gsl_vector_subvector(r, k, N - k);
/* r <- n_k e_k + r */
gsl_vector_set(r, k, gsl_vector_get(r, k) + ymk);
/* r <- P_k r */
tau = gsl_vector_get(state->tau, k);
gsl_linalg_householder_hv(tau, &uk.vector, &rk.vector);
}
/* x <- x + V_m y_m */
gsl_vector_add(x, r);
/* compute new residual r = b - A*x */
gsl_vector_memcpy(r, b);
gsl_spblas_dgemv(CblasNoTrans, -1.0, A, x, 1.0, r);
normr = gsl_blas_dnrm2(r);
if (normr <= reltol)
status = GSL_SUCCESS; /* converged */
else
status = GSL_CONTINUE; /* not yet converged */
/* store residual norm */
state->normr = normr;
return status;
}
} /* gmres_iterate() */
static double
gmres_normr(const void *vstate)
{
const gmres_state_t *state = (const gmres_state_t *) vstate;
return state->normr;
} /* gmres_normr() */
static const gsl_splinalg_itersolve_type gmres_type =
{
"gmres",
&gmres_alloc,
&gmres_iterate,
&gmres_normr,
&gmres_free
};
const gsl_splinalg_itersolve_type * gsl_splinalg_itersolve_gmres =
&gmres_type;
|