1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
/* spmatrix.c
*
* Copyright (C) 2012 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_spmatrix.h>
#include "avl.c"
static int compare_triplet(const void *pa, const void *pb, void *param);
static void *avl_spmalloc (size_t size, void *param);
static void avl_spfree (void *block, void *param);
static struct libavl_allocator avl_allocator_spmatrix =
{
avl_spmalloc,
avl_spfree
};
/*
gsl_spmatrix_alloc()
Allocate a sparse matrix in triplet representation
Inputs: n1 - number of rows
n2 - number of columns
Notes: if (n1,n2) are not known at allocation time, they can each be
set to 1, and they will be expanded as elements are added to the matrix
*/
gsl_spmatrix *
gsl_spmatrix_alloc(const size_t n1, const size_t n2)
{
const double density = 0.1; /* estimate */
size_t nzmax = (size_t) floor(n1 * n2 * density);
if (nzmax == 0)
nzmax = 10;
return gsl_spmatrix_alloc_nzmax(n1, n2, nzmax, GSL_SPMATRIX_TRIPLET);
} /* gsl_spmatrix_alloc() */
/*
gsl_spmatrix_alloc_nzmax()
Allocate a sparse matrix with given nzmax
Inputs: n1 - number of rows
n2 - number of columns
nzmax - maximum number of matrix elements
sptype - type of matrix (triplet, CCS, CRS)
Notes: if (n1,n2) are not known at allocation time, they can each be
set to 1, and they will be expanded as elements are added to the matrix
*/
gsl_spmatrix *
gsl_spmatrix_alloc_nzmax(const size_t n1, const size_t n2,
const size_t nzmax, const size_t sptype)
{
gsl_spmatrix *m;
if (n1 == 0)
{
GSL_ERROR_NULL ("matrix dimension n1 must be positive integer",
GSL_EINVAL);
}
else if (n2 == 0)
{
GSL_ERROR_NULL ("matrix dimension n2 must be positive integer",
GSL_EINVAL);
}
m = calloc(1, sizeof(gsl_spmatrix));
if (!m)
{
GSL_ERROR_NULL("failed to allocate space for spmatrix struct",
GSL_ENOMEM);
}
m->size1 = n1;
m->size2 = n2;
m->nz = 0;
m->nzmax = GSL_MAX(nzmax, 1);
m->sptype = sptype;
m->i = malloc(m->nzmax * sizeof(size_t));
if (!m->i)
{
gsl_spmatrix_free(m);
GSL_ERROR_NULL("failed to allocate space for row indices",
GSL_ENOMEM);
}
if (sptype == GSL_SPMATRIX_TRIPLET)
{
m->tree_data = malloc(sizeof(gsl_spmatrix_tree));
if (!m->tree_data)
{
gsl_spmatrix_free(m);
GSL_ERROR_NULL("failed to allocate space for AVL tree struct",
GSL_ENOMEM);
}
m->tree_data->n = 0;
/* allocate tree data structure */
m->tree_data->tree = avl_create(compare_triplet, (void *) m,
&avl_allocator_spmatrix);
if (!m->tree_data->tree)
{
gsl_spmatrix_free(m);
GSL_ERROR_NULL("failed to allocate space for AVL tree",
GSL_ENOMEM);
}
/* preallocate nzmax tree nodes */
m->tree_data->node_array = malloc(m->nzmax * sizeof(struct avl_node));
if (!m->tree_data->node_array)
{
gsl_spmatrix_free(m);
GSL_ERROR_NULL("failed to allocate space for AVL tree nodes",
GSL_ENOMEM);
}
m->p = malloc(m->nzmax * sizeof(size_t));
if (!m->p)
{
gsl_spmatrix_free(m);
GSL_ERROR_NULL("failed to allocate space for column indices",
GSL_ENOMEM);
}
}
else if (sptype == GSL_SPMATRIX_CCS)
{
m->p = malloc((n2 + 1) * sizeof(size_t));
m->work = malloc(GSL_MAX(n1, n2) *
GSL_MAX(sizeof(size_t), sizeof(double)));
if (!m->p || !m->work)
{
gsl_spmatrix_free(m);
GSL_ERROR_NULL("failed to allocate space for column pointers",
GSL_ENOMEM);
}
}
else if (sptype == GSL_SPMATRIX_CRS)
{
m->p = malloc((n1 + 1) * sizeof(size_t));
m->work = malloc(GSL_MAX(n1, n2) *
GSL_MAX(sizeof(size_t), sizeof(double)));
if (!m->p || !m->work)
{
gsl_spmatrix_free(m);
GSL_ERROR_NULL("failed to allocate space for row pointers",
GSL_ENOMEM);
}
}
m->data = malloc(m->nzmax * sizeof(double));
if (!m->data)
{
gsl_spmatrix_free(m);
GSL_ERROR_NULL("failed to allocate space for data",
GSL_ENOMEM);
}
return m;
} /* gsl_spmatrix_alloc_nzmax() */
/*
gsl_spmatrix_free()
Free sparse matrix object
*/
void
gsl_spmatrix_free(gsl_spmatrix *m)
{
if (m->i)
free(m->i);
if (m->p)
free(m->p);
if (m->data)
free(m->data);
if (m->work)
free(m->work);
if (m->tree_data)
{
if (m->tree_data->tree)
avl_destroy(m->tree_data->tree, NULL);
if (m->tree_data->node_array)
free(m->tree_data->node_array);
free(m->tree_data);
}
free(m);
} /* gsl_spmatrix_free() */
/*
gsl_spmatrix_realloc()
As elements are added to the sparse matrix, its possible that they
will exceed the previously specified nzmax - reallocate the matrix
with a new nzmax
*/
int
gsl_spmatrix_realloc(const size_t nzmax, gsl_spmatrix *m)
{
int s = GSL_SUCCESS;
void *ptr;
if (nzmax < m->nz)
{
GSL_ERROR("new nzmax is less than current nz", GSL_EINVAL);
}
ptr = realloc(m->i, nzmax * sizeof(size_t));
if (!ptr)
{
GSL_ERROR("failed to allocate space for row indices", GSL_ENOMEM);
}
m->i = (size_t *) ptr;
if (GSL_SPMATRIX_ISTRIPLET(m))
{
ptr = realloc(m->p, nzmax * sizeof(size_t));
if (!ptr)
{
GSL_ERROR("failed to allocate space for column indices", GSL_ENOMEM);
}
m->p = (size_t *) ptr;
}
ptr = realloc(m->data, nzmax * sizeof(double));
if (!ptr)
{
GSL_ERROR("failed to allocate space for data", GSL_ENOMEM);
}
m->data = (double *) ptr;
/* rebuild binary tree */
if (GSL_SPMATRIX_ISTRIPLET(m))
{
size_t n;
/* reset tree to empty state, but don't free root tree ptr */
avl_empty(m->tree_data->tree, NULL);
m->tree_data->n = 0;
ptr = realloc(m->tree_data->node_array, nzmax * sizeof(struct avl_node));
if (!ptr)
{
GSL_ERROR("failed to allocate space for AVL tree nodes", GSL_ENOMEM);
}
m->tree_data->node_array = ptr;
/*
* need to reinsert all tree elements since the m->data addresses
* have changed
*/
for (n = 0; n < m->nz; ++n)
{
ptr = avl_insert(m->tree_data->tree, &m->data[n]);
if (ptr != NULL)
{
GSL_ERROR("detected duplicate entry", GSL_EINVAL);
}
}
}
/* update to new nzmax */
m->nzmax = nzmax;
return s;
} /* gsl_spmatrix_realloc() */
int
gsl_spmatrix_set_zero(gsl_spmatrix *m)
{
m->nz = 0;
if (GSL_SPMATRIX_ISTRIPLET(m))
{
/* reset tree to empty state and node index pointer to 0 */
avl_empty(m->tree_data->tree, NULL);
m->tree_data->n = 0;
}
return GSL_SUCCESS;
} /* gsl_spmatrix_set_zero() */
size_t
gsl_spmatrix_nnz(const gsl_spmatrix *m)
{
return m->nz;
} /* gsl_spmatrix_nnz() */
/*
gsl_spmatrix_compare_idx()
Comparison function for searching binary tree in triplet
representation.
To detect duplicate elements in the tree, we want to determine
if there already exists an entry for (i,j) in the tree. Since
the actual tree node stores only the data elements data[n],
we will do pointer arithmetic to get from the given data[n]
to the row/column indices i[n] and j[n].
This compare function will sort the tree first by row i,
and for equal rows, it will then sort by column j
Inputs: ia - row index of element a
ja - column index of element a
ib - row index of element b
jb - column index of element b
Return:
-1 if pa < pb: (ia,ja) < (ib,jb)
+1 if pa > pb: (ia,ja) > (ib,jb)
0 if pa = pb: (ia,ja) == (ib,jb)
*/
int
gsl_spmatrix_compare_idx(const size_t ia, const size_t ja,
const size_t ib, const size_t jb)
{
if (ia < ib)
return -1;
else if (ia > ib)
return 1;
else
{
/* row indices are equal, sort by column index */
if (ja < jb)
return -1;
else if (ja > jb)
return 1;
else
return 0; /* row and column indices are equal */
}
}
/*
gsl_spmatrix_tree_rebuild()
When reading a triplet matrix from disk, or when
copying a triplet matrix, it is necessary to rebuild the
binary tree for element searches.
Inputs: m - triplet matrix
*/
int
gsl_spmatrix_tree_rebuild(gsl_spmatrix * m)
{
if (!GSL_SPMATRIX_ISTRIPLET(m))
{
GSL_ERROR("m must be in triplet format", GSL_EINVAL);
}
else
{
size_t n;
/* reset tree to empty state, but don't free root tree ptr */
avl_empty(m->tree_data->tree, NULL);
m->tree_data->n = 0;
/* insert all tree elements */
for (n = 0; n < m->nz; ++n)
{
void *ptr = avl_insert(m->tree_data->tree, &m->data[n]);
if (ptr != NULL)
{
GSL_ERROR("detected duplicate entry", GSL_EINVAL);
}
}
return GSL_SUCCESS;
}
}
/*
compare_triplet()
Comparison function for searching binary tree in triplet
representation.
To detect duplicate elements in the tree, we want to determine
if there already exists an entry for (i,j) in the tree. Since
the actual tree node stores only the data elements data[n],
we will do pointer arithmetic to get from the given data[n]
to the row/column indices i[n] and j[n].
This compare function will sort the tree first by row i,
and for equal rows, it will then sort by column j
Inputs: pa - element 1 for comparison (double *)
pb - element 2 for comparison (double *)
param - parameter (gsl_spmatrix)
Return:
-1 if pa < pb: (ia,ja) < (ib,jb)
+1 if pa > pb: (ia,ja) > (ib,jb)
0 if pa = pb: (ia,ja) == (ib,jb)
*/
static int
compare_triplet(const void *pa, const void *pb, void *param)
{
gsl_spmatrix *m = (gsl_spmatrix *) param;
/* pointer arithmetic to find indices in data array */
const size_t idxa = (const double *) pa - m->data;
const size_t idxb = (const double *) pb - m->data;
return gsl_spmatrix_compare_idx(m->i[idxa], m->p[idxa],
m->i[idxb], m->p[idxb]);
} /* compare_triplet() */
static void *
avl_spmalloc (size_t size, void *param)
{
gsl_spmatrix *m = (gsl_spmatrix *) param;
if (size != sizeof(struct avl_node))
{
GSL_ERROR_NULL("attemping to allocate incorrect node size", GSL_EBADLEN);
}
/*
* return the next available avl_node slot; index
* m->tree_data->n keeps track of next open slot
*/
if (m->tree_data->n < m->nzmax)
{
/* cast to char* for pointer arithmetic */
unsigned char *node_ptr = (unsigned char *) m->tree_data->node_array;
/* offset in bytes for next node slot */
size_t offset = (m->tree_data->n)++ * sizeof(struct avl_node);
return node_ptr + offset;
}
else
{
/*
* we should never get here - gsl_spmatrix_realloc() should
* be called before exceeding nzmax nodes
*/
GSL_ERROR_NULL("attemping to allocate tree node past nzmax", GSL_EINVAL);
}
}
static void
avl_spfree (void *block, void *param)
{
(void)block;
(void)param;
/*
* do nothing - instead of allocating/freeing individual nodes,
* we malloc and free nzmax nodes at a time
*/
}
|