1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
/* sum/levin_u.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Gerard Jungman, Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_test.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sum.h>
int
gsl_sum_levin_u_accel (const double *array, const size_t array_size,
gsl_sum_levin_u_workspace * w,
double *sum_accel, double *abserr)
{
return gsl_sum_levin_u_minmax (array, array_size,
0, array_size - 1, w, sum_accel, abserr);
}
int
gsl_sum_levin_u_minmax (const double *array, const size_t array_size,
const size_t min_terms, const size_t max_terms,
gsl_sum_levin_u_workspace * w,
double *sum_accel, double *abserr)
{
/* Ignore any trailing zeros in the array */
size_t size = array_size;
while (size > 0 && array[size - 1] == 0) {
size--;
}
if (size == 0)
{
*sum_accel = 0.0;
*abserr = 0.0;
w->sum_plain = 0.0;
w->terms_used = 0;
return GSL_SUCCESS;
}
else if (size == 1)
{
*sum_accel = array[0];
*abserr = 0.0;
w->sum_plain = array[0];
w->terms_used = 1;
return GSL_SUCCESS;
}
else
{
const double SMALL = 0.01;
const size_t nmax = GSL_MAX (max_terms, array_size) - 1;
double noise_n = 0.0, noise_nm1 = 0.0;
double trunc_n = 0.0, trunc_nm1 = 0.0;
double actual_trunc_n = 0.0, actual_trunc_nm1 = 0.0;
double result_n = 0.0, result_nm1 = 0.0;
double variance = 0;
size_t n;
unsigned int i;
int better = 0;
int before = 0;
int converging = 0;
double least_trunc = GSL_DBL_MAX;
double least_trunc_noise = GSL_DBL_MAX;
double least_trunc_result;
/* Calculate specified minimum number of terms. No convergence
tests are made, and no truncation information is stored. */
for (n = 0; n < min_terms; n++)
{
const double t = array[n];
result_nm1 = result_n;
gsl_sum_levin_u_step (t, n, nmax, w, &result_n);
}
least_trunc_result = result_n;
variance = 0;
for (i = 0; i < n; i++)
{
double dn = w->dsum[i] * GSL_MACH_EPS * array[i];
variance += dn * dn;
}
noise_n = sqrt (variance);
/* Calculate up to maximum number of terms. Check truncation
condition. */
for (; n <= nmax; n++)
{
const double t = array[n];
result_nm1 = result_n;
gsl_sum_levin_u_step (t, n, nmax, w, &result_n);
/* Compute the truncation error directly */
actual_trunc_nm1 = actual_trunc_n;
actual_trunc_n = fabs (result_n - result_nm1);
/* Average results to make a more reliable estimate of the
real truncation error */
trunc_nm1 = trunc_n;
trunc_n = 0.5 * (actual_trunc_n + actual_trunc_nm1);
noise_nm1 = noise_n;
variance = 0;
for (i = 0; i <= n; i++)
{
double dn = w->dsum[i] * GSL_MACH_EPS * array[i];
variance += dn * dn;
}
noise_n = sqrt (variance);
/* Determine if we are in the convergence region. */
better = (trunc_n < trunc_nm1 || trunc_n < SMALL * fabs (result_n));
converging = converging || (better && before);
before = better;
if (converging)
{
if (trunc_n < least_trunc)
{
/* Found a low truncation point in the convergence
region. Save it. */
least_trunc_result = result_n;
least_trunc = trunc_n;
least_trunc_noise = noise_n;
}
if (noise_n > trunc_n / 3.0)
break;
if (trunc_n < 10.0 * GSL_MACH_EPS * fabs (result_n))
break;
}
}
if (converging)
{
/* Stopped in the convergence region. Return result and
error estimate. */
*sum_accel = least_trunc_result;
*abserr = GSL_MAX_DBL (least_trunc, least_trunc_noise);
w->terms_used = n;
return GSL_SUCCESS;
}
else
{
/* Never reached the convergence region. Use the last
calculated values. */
*sum_accel = result_n;
*abserr = GSL_MAX_DBL (trunc_n, noise_n);
w->terms_used = n;
return GSL_SUCCESS;
}
}
}
int
gsl_sum_levin_u_step (const double term, const size_t n, const size_t nmax,
gsl_sum_levin_u_workspace * w, double *sum_accel)
{
#define I(i,j) ((i)*(nmax+1) + (j))
if (n == 0)
{
*sum_accel = term;
w->sum_plain = term;
w->q_den[0] = 1.0 / term;
w->q_num[0] = 1.0;
w->dq_den[I (0, 0)] = -1.0 / (term * term);
w->dq_num[I (0, 0)] = 0.0;
w->dsum[0] = 1.0;
return GSL_SUCCESS;
}
else
{
double result;
double factor = 1.0;
double ratio = (double) n / (n + 1.0);
unsigned int i;
int j;
w->sum_plain += term;
w->q_den[n] = 1.0 / (term * (n + 1.0) * (n + 1.0));
w->q_num[n] = w->sum_plain * w->q_den[n];
for (i = 0; i < n; i++)
{
w->dq_den[I (i, n)] = 0;
w->dq_num[I (i, n)] = w->q_den[n];
}
w->dq_den[I (n, n)] = -w->q_den[n] / term;
w->dq_num[I (n, n)] =
w->q_den[n] + w->sum_plain * (w->dq_den[I (n, n)]);
for (j = n - 1; j >= 0; j--)
{
double c = factor * (j + 1) / (n + 1);
factor *= ratio;
w->q_den[j] = w->q_den[j + 1] - c * w->q_den[j];
w->q_num[j] = w->q_num[j + 1] - c * w->q_num[j];
for (i = 0; i < n; i++)
{
w->dq_den[I (i, j)] =
w->dq_den[I (i, j + 1)] - c * w->dq_den[I (i, j)];
w->dq_num[I (i, j)] =
w->dq_num[I (i, j + 1)] - c * w->dq_num[I (i, j)];
}
w->dq_den[I (n, j)] = w->dq_den[I (n, j + 1)];
w->dq_num[I (n, j)] = w->dq_num[I (n, j + 1)];
}
result = w->q_num[0] / w->q_den[0];
*sum_accel = result;
for (i = 0; i <= n; i++)
{
w->dsum[i] =
(w->dq_num[I (i, 0)] -
result * w->dq_den[I (i, 0)]) / w->q_den[0];
}
return GSL_SUCCESS;
}
}
|