1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
/* sum/levin_utrunc.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_test.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sum.h>
int
gsl_sum_levin_utrunc_accel (const double *array,
const size_t array_size,
gsl_sum_levin_utrunc_workspace * w,
double *sum_accel, double *abserr_trunc)
{
return gsl_sum_levin_utrunc_minmax (array, array_size,
0, array_size - 1,
w, sum_accel, abserr_trunc);
}
int
gsl_sum_levin_utrunc_minmax (const double *array,
const size_t array_size,
const size_t min_terms,
const size_t max_terms,
gsl_sum_levin_utrunc_workspace * w,
double *sum_accel, double *abserr_trunc)
{
if (array_size == 0)
{
*sum_accel = 0.0;
*abserr_trunc = 0.0;
w->sum_plain = 0.0;
w->terms_used = 0;
return GSL_SUCCESS;
}
else if (array_size == 1)
{
*sum_accel = array[0];
*abserr_trunc = GSL_POSINF;
w->sum_plain = array[0];
w->terms_used = 1;
return GSL_SUCCESS;
}
else
{
const double SMALL = 0.01;
const size_t nmax = GSL_MAX (max_terms, array_size) - 1;
double trunc_n = 0.0, trunc_nm1 = 0.0;
double actual_trunc_n = 0.0, actual_trunc_nm1 = 0.0;
double result_n = 0.0, result_nm1 = 0.0;
size_t n;
int better = 0;
int before = 0;
int converging = 0;
double least_trunc = GSL_DBL_MAX;
double result_least_trunc;
/* Calculate specified minimum number of terms. No convergence
tests are made, and no truncation information is stored. */
for (n = 0; n < min_terms; n++)
{
const double t = array[n];
result_nm1 = result_n;
gsl_sum_levin_utrunc_step (t, n, w, &result_n);
}
/* Assume the result after the minimum calculation is the best. */
result_least_trunc = result_n;
/* Calculate up to maximum number of terms. Check truncation
condition. */
for (; n <= nmax; n++)
{
const double t = array[n];
result_nm1 = result_n;
gsl_sum_levin_utrunc_step (t, n, w, &result_n);
/* Compute the truncation error directly */
actual_trunc_nm1 = actual_trunc_n;
actual_trunc_n = fabs (result_n - result_nm1);
/* Average results to make a more reliable estimate of the
real truncation error */
trunc_nm1 = trunc_n;
trunc_n = 0.5 * (actual_trunc_n + actual_trunc_nm1);
/* Determine if we are in the convergence region. */
better = (trunc_n < trunc_nm1 || trunc_n < SMALL * fabs (result_n));
converging = converging || (better && before);
before = better;
if (converging)
{
if (trunc_n < least_trunc)
{
/* Found a low truncation point in the convergence
region. Save it. */
least_trunc = trunc_n;
result_least_trunc = result_n;
}
if (fabs (trunc_n / result_n) < 10.0 * GSL_MACH_EPS)
break;
}
}
if (converging)
{
/* Stopped in the convergence region. Return result and
error estimate. */
*sum_accel = result_least_trunc;
*abserr_trunc = least_trunc;
w->terms_used = n;
return GSL_SUCCESS;
}
else
{
/* Never reached the convergence region. Use the last
calculated values. */
*sum_accel = result_n;
*abserr_trunc = trunc_n;
w->terms_used = n;
return GSL_SUCCESS;
}
}
}
int
gsl_sum_levin_utrunc_step (const double term,
const size_t n,
gsl_sum_levin_utrunc_workspace * w, double *sum_accel)
{
if (term == 0.0)
{
/* This is actually harmless when treated in this way. A term
which is exactly zero is simply ignored; the state is not
changed. We return GSL_EZERODIV as an indicator that this
occured. */
return GSL_EZERODIV;
}
else if (n == 0)
{
*sum_accel = term;
w->sum_plain = term;
w->q_den[0] = 1.0 / term;
w->q_num[0] = 1.0;
return GSL_SUCCESS;
}
else
{
double factor = 1.0;
double ratio = (double) n / (n + 1.0);
int j;
w->sum_plain += term;
w->q_den[n] = 1.0 / (term * (n + 1.0) * (n + 1.0));
w->q_num[n] = w->sum_plain * w->q_den[n];
for (j = n - 1; j >= 0; j--)
{
double c = factor * (j + 1) / (n + 1);
factor *= ratio;
w->q_den[j] = w->q_den[j + 1] - c * w->q_den[j];
w->q_num[j] = w->q_num[j + 1] - c * w->q_num[j];
}
*sum_accel = w->q_num[0] / w->q_den[0];
return GSL_SUCCESS;
}
}
|