File: nlfit2b.c

package info (click to toggle)
gsl-doc 2.6-1
  • links: PTS
  • area: non-free
  • in suites: bullseye
  • size: 30,000 kB
  • sloc: ansic: 255,377; sh: 11,468; makefile: 1,134; python: 68
file content (254 lines) | stat: -rw-r--r-- 6,568 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#include <stdlib.h>
#include <stdio.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_multifit_nlinear.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

struct data
{
  double *t;
  double *y;
  size_t n;
};

/* model function: a * exp( -1/2 * [ (t - b) / c ]^2 ) */
double
gaussian(const double a, const double b, const double c, const double t)
{
  const double z = (t - b) / c;
  return (a * exp(-0.5 * z * z));
}

int
func_f (const gsl_vector * x, void *params, gsl_vector * f)
{
  struct data *d = (struct data *) params;
  double a = gsl_vector_get(x, 0);
  double b = gsl_vector_get(x, 1);
  double c = gsl_vector_get(x, 2);
  size_t i;

  for (i = 0; i < d->n; ++i)
    {
      double ti = d->t[i];
      double yi = d->y[i];
      double y = gaussian(a, b, c, ti);

      gsl_vector_set(f, i, yi - y);
    }

  return GSL_SUCCESS;
}

int
func_df (const gsl_vector * x, void *params, gsl_matrix * J)
{
  struct data *d = (struct data *) params;
  double a = gsl_vector_get(x, 0);
  double b = gsl_vector_get(x, 1);
  double c = gsl_vector_get(x, 2);
  size_t i;

  for (i = 0; i < d->n; ++i)
    {
      double ti = d->t[i];
      double zi = (ti - b) / c;
      double ei = exp(-0.5 * zi * zi);

      gsl_matrix_set(J, i, 0, -ei);
      gsl_matrix_set(J, i, 1, -(a / c) * ei * zi);
      gsl_matrix_set(J, i, 2, -(a / c) * ei * zi * zi);
    }

  return GSL_SUCCESS;
}

int
func_fvv (const gsl_vector * x, const gsl_vector * v,
          void *params, gsl_vector * fvv)
{
  struct data *d = (struct data *) params;
  double a = gsl_vector_get(x, 0);
  double b = gsl_vector_get(x, 1);
  double c = gsl_vector_get(x, 2);
  double va = gsl_vector_get(v, 0);
  double vb = gsl_vector_get(v, 1);
  double vc = gsl_vector_get(v, 2);
  size_t i;

  for (i = 0; i < d->n; ++i)
    {
      double ti = d->t[i];
      double zi = (ti - b) / c;
      double ei = exp(-0.5 * zi * zi);
      double Dab = -zi * ei / c;
      double Dac = -zi * zi * ei / c;
      double Dbb = a * ei / (c * c) * (1.0 - zi*zi);
      double Dbc = a * zi * ei / (c * c) * (2.0 - zi*zi);
      double Dcc = a * zi * zi * ei / (c * c) * (3.0 - zi*zi);
      double sum;

      sum = 2.0 * va * vb * Dab +
            2.0 * va * vc * Dac +
                  vb * vb * Dbb +
            2.0 * vb * vc * Dbc +
                  vc * vc * Dcc;

      gsl_vector_set(fvv, i, sum);
    }

  return GSL_SUCCESS;
}

void
callback(const size_t iter, void *params,
         const gsl_multifit_nlinear_workspace *w)
{
  gsl_vector *f = gsl_multifit_nlinear_residual(w);
  gsl_vector *x = gsl_multifit_nlinear_position(w);
  double avratio = gsl_multifit_nlinear_avratio(w);
  double rcond;

  (void) params; /* not used */

  /* compute reciprocal condition number of J(x) */
  gsl_multifit_nlinear_rcond(&rcond, w);

  fprintf(stderr, "iter %2zu: a = %.4f, b = %.4f, c = %.4f, |a|/|v| = %.4f cond(J) = %8.4f, |f(x)| = %.4f\n",
          iter,
          gsl_vector_get(x, 0),
          gsl_vector_get(x, 1),
          gsl_vector_get(x, 2),
          avratio,
          1.0 / rcond,
          gsl_blas_dnrm2(f));
}

void
solve_system(gsl_vector *x, gsl_multifit_nlinear_fdf *fdf,
             gsl_multifit_nlinear_parameters *params)
{
  const gsl_multifit_nlinear_type *T = gsl_multifit_nlinear_trust;
  const size_t max_iter = 200;
  const double xtol = 1.0e-8;
  const double gtol = 1.0e-8;
  const double ftol = 1.0e-8;
  const size_t n = fdf->n;
  const size_t p = fdf->p;
  gsl_multifit_nlinear_workspace *work =
    gsl_multifit_nlinear_alloc(T, params, n, p);
  gsl_vector * f = gsl_multifit_nlinear_residual(work);
  gsl_vector * y = gsl_multifit_nlinear_position(work);
  int info;
  double chisq0, chisq, rcond;

  /* initialize solver */
  gsl_multifit_nlinear_init(x, fdf, work);

  /* store initial cost */
  gsl_blas_ddot(f, f, &chisq0);

  /* iterate until convergence */
  gsl_multifit_nlinear_driver(max_iter, xtol, gtol, ftol,
                              callback, NULL, &info, work);

  /* store final cost */
  gsl_blas_ddot(f, f, &chisq);

  /* store cond(J(x)) */
  gsl_multifit_nlinear_rcond(&rcond, work);

  gsl_vector_memcpy(x, y);

  /* print summary */

  fprintf(stderr, "NITER         = %zu\n", gsl_multifit_nlinear_niter(work));
  fprintf(stderr, "NFEV          = %zu\n", fdf->nevalf);
  fprintf(stderr, "NJEV          = %zu\n", fdf->nevaldf);
  fprintf(stderr, "NAEV          = %zu\n", fdf->nevalfvv);
  fprintf(stderr, "initial cost  = %.12e\n", chisq0);
  fprintf(stderr, "final cost    = %.12e\n", chisq);
  fprintf(stderr, "final x       = (%.12e, %.12e, %12e)\n",
          gsl_vector_get(x, 0), gsl_vector_get(x, 1), gsl_vector_get(x, 2));
  fprintf(stderr, "final cond(J) = %.12e\n", 1.0 / rcond);

  gsl_multifit_nlinear_free(work);
}

int
main (void)
{
  const size_t n = 300;  /* number of data points to fit */
  const size_t p = 3;    /* number of model parameters */
  const double a = 5.0;  /* amplitude */
  const double b = 0.4;  /* center */
  const double c = 0.15; /* width */
  const gsl_rng_type * T = gsl_rng_default;
  gsl_vector *f = gsl_vector_alloc(n);
  gsl_vector *x = gsl_vector_alloc(p);
  gsl_multifit_nlinear_fdf fdf;
  gsl_multifit_nlinear_parameters fdf_params =
    gsl_multifit_nlinear_default_parameters();
  struct data fit_data;
  gsl_rng * r;
  size_t i;
  
  gsl_rng_env_setup ();
  r = gsl_rng_alloc (T);

  fit_data.t = malloc(n * sizeof(double));
  fit_data.y = malloc(n * sizeof(double));
  fit_data.n = n;

  /* generate synthetic data with noise */
  for (i = 0; i < n; ++i)
    {
      double t = (double)i / (double) n;
      double y0 = gaussian(a, b, c, t);
      double dy = gsl_ran_gaussian (r, 0.1 * y0);

      fit_data.t[i] = t;
      fit_data.y[i] = y0 + dy;
    }

  /* define function to be minimized */
  fdf.f = func_f;
  fdf.df = func_df;
  fdf.fvv = func_fvv;
  fdf.n = n;
  fdf.p = p;
  fdf.params = &fit_data;

  /* starting point */
  gsl_vector_set(x, 0, 1.0);
  gsl_vector_set(x, 1, 0.0);
  gsl_vector_set(x, 2, 1.0);

  fdf_params.trs = gsl_multifit_nlinear_trs_lmaccel;
  solve_system(x, &fdf, &fdf_params);

  /* print data and model */
  {
    double A = gsl_vector_get(x, 0);
    double B = gsl_vector_get(x, 1);
    double C = gsl_vector_get(x, 2);

    for (i = 0; i < n; ++i)
      {
        double ti = fit_data.t[i];
        double yi = fit_data.y[i];
        double fi = gaussian(A, B, C, ti);

        printf("%f %f %f\n", ti, yi, fi);
      }
  }

  gsl_vector_free(f);
  gsl_vector_free(x);
  gsl_rng_free(r);

  return 0;
}