1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
/* siman/siman_tsp.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Mark Galassi
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_siman.h>
#include <gsl/gsl_ieee_utils.h>
/* set up parameters for this simulated annealing run */
#define N_TRIES 200 /* how many points do we try before stepping */
#define ITERS_FIXED_T 2000 /* how many iterations for each T? */
#define STEP_SIZE 1.0 /* max step size in random walk */
#define K 1.0 /* Boltzmann constant */
#define T_INITIAL 5000.0 /* initial temperature */
#define MU_T 1.002 /* damping factor for temperature */
#define T_MIN 5.0e-1
gsl_siman_params_t params = {N_TRIES, ITERS_FIXED_T, STEP_SIZE,
K, T_INITIAL, MU_T, T_MIN};
struct s_tsp_city {
const char * name;
double lat, longitude; /* coordinates */
};
typedef struct s_tsp_city Stsp_city;
void prepare_distance_matrix(void);
void exhaustive_search(void);
void print_distance_matrix(void);
double city_distance(Stsp_city c1, Stsp_city c2);
double Etsp(void *xp);
double Mtsp(void *xp, void *yp);
void Stsp(const gsl_rng * r, void *xp, double step_size);
void Ptsp(void *xp);
/* in this table, latitude and longitude are obtained from the US
Census Bureau, at http://www.census.gov/cgi-bin/gazetteer */
Stsp_city cities[] = {{"Santa Fe", 35.68, 105.95},
{"Phoenix", 33.54, 112.07},
{"Albuquerque", 35.12, 106.62},
{"Clovis", 34.41, 103.20},
{"Durango", 37.29, 107.87},
{"Dallas", 32.79, 96.77},
{"Tesuque", 35.77, 105.92},
{"Grants", 35.15, 107.84},
{"Los Alamos", 35.89, 106.28},
{"Las Cruces", 32.34, 106.76},
{"Cortez", 37.35, 108.58},
{"Gallup", 35.52, 108.74}};
#define N_CITIES (sizeof(cities)/sizeof(Stsp_city))
double distance_matrix[N_CITIES][N_CITIES];
/* distance between two cities */
double city_distance(Stsp_city c1, Stsp_city c2)
{
const double earth_radius = 6375.000; /* 6000KM approximately */
/* sin and cos of lat and long; must convert to radians */
double sla1 = sin(c1.lat*M_PI/180), cla1 = cos(c1.lat*M_PI/180),
slo1 = sin(c1.longitude*M_PI/180), clo1 = cos(c1.longitude*M_PI/180);
double sla2 = sin(c2.lat*M_PI/180), cla2 = cos(c2.lat*M_PI/180),
slo2 = sin(c2.longitude*M_PI/180), clo2 = cos(c2.longitude*M_PI/180);
double x1 = cla1*clo1;
double x2 = cla2*clo2;
double y1 = cla1*slo1;
double y2 = cla2*slo2;
double z1 = sla1;
double z2 = sla2;
double dot_product = x1*x2 + y1*y2 + z1*z2;
double angle = acos(dot_product);
/* distance is the angle (in radians) times the earth radius */
return angle*earth_radius;
}
/* energy for the travelling salesman problem */
double Etsp(void *xp)
{
/* an array of N_CITIES integers describing the order */
int *route = (int *) xp;
double E = 0;
unsigned int i;
for (i = 0; i < N_CITIES; ++i) {
/* use the distance_matrix to optimize this calculation; it had
better be allocated!! */
E += distance_matrix[route[i]][route[(i + 1) % N_CITIES]];
}
return E;
}
double Mtsp(void *xp, void *yp)
{
int *route1 = (int *) xp, *route2 = (int *) yp;
double distance = 0;
unsigned int i;
for (i = 0; i < N_CITIES; ++i) {
distance += ((route1[i] == route2[i]) ? 0 : 1);
}
return distance;
}
/* take a step through the TSP space */
void Stsp(const gsl_rng * r, void *xp, double step_size)
{
int x1, x2, dummy;
int *route = (int *) xp;
step_size = 0 ; /* prevent warnings about unused parameter */
/* pick the two cities to swap in the matrix; we leave the first
city fixed */
x1 = (gsl_rng_get (r) % (N_CITIES-1)) + 1;
do {
x2 = (gsl_rng_get (r) % (N_CITIES-1)) + 1;
} while (x2 == x1);
dummy = route[x1];
route[x1] = route[x2];
route[x2] = dummy;
}
void Ptsp(void *xp)
{
unsigned int i;
int *route = (int *) xp;
printf(" [");
for (i = 0; i < N_CITIES; ++i) {
printf(" %d ", route[i]);
}
printf("] ");
}
int main(void)
{
int x_initial[N_CITIES];
unsigned int i;
const gsl_rng * r = gsl_rng_alloc (gsl_rng_env_setup()) ;
gsl_ieee_env_setup ();
prepare_distance_matrix();
/* set up a trivial initial route */
printf("# initial order of cities:\n");
for (i = 0; i < N_CITIES; ++i) {
printf("# \"%s\"\n", cities[i].name);
x_initial[i] = i;
}
printf("# distance matrix is:\n");
print_distance_matrix();
printf("# initial coordinates of cities (longitude and latitude)\n");
/* this can be plotted with */
/* ./siman_tsp > hhh ; grep city_coord hhh | awk '{print $2 " " $3}' | xyplot -ps -d "xy" > c.eps */
for (i = 0; i < N_CITIES+1; ++i) {
printf("###initial_city_coord: %g %g \"%s\"\n",
-cities[x_initial[i % N_CITIES]].longitude,
cities[x_initial[i % N_CITIES]].lat,
cities[x_initial[i % N_CITIES]].name);
}
/* exhaustive_search(); */
gsl_siman_solve(r, x_initial, Etsp, Stsp, Mtsp, Ptsp, NULL, NULL, NULL,
N_CITIES*sizeof(int), params);
printf("# final order of cities:\n");
for (i = 0; i < N_CITIES; ++i) {
printf("# \"%s\"\n", cities[x_initial[i]].name);
}
printf("# final coordinates of cities (longitude and latitude)\n");
/* this can be plotted with */
/* ./siman_tsp > hhh ; grep city_coord hhh | awk '{print $2 " " $3}' | xyplot -ps -d "xy" > c.eps */
for (i = 0; i < N_CITIES+1; ++i) {
printf("###final_city_coord: %g %g %s\n",
-cities[x_initial[i % N_CITIES]].longitude,
cities[x_initial[i % N_CITIES]].lat,
cities[x_initial[i % N_CITIES]].name);
}
printf("# ");
fflush(stdout);
#if 0
system("date");
#endif /* 0 */
fflush(stdout);
return 0;
}
void prepare_distance_matrix()
{
unsigned int i, j;
double dist;
for (i = 0; i < N_CITIES; ++i) {
for (j = 0; j < N_CITIES; ++j) {
if (i == j) {
dist = 0;
} else {
dist = city_distance(cities[i], cities[j]);
}
distance_matrix[i][j] = dist;
}
}
}
void print_distance_matrix()
{
unsigned int i, j;
for (i = 0; i < N_CITIES; ++i) {
printf("# ");
for (j = 0; j < N_CITIES; ++j) {
printf("%15.8f ", distance_matrix[i][j]);
}
printf("\n");
}
}
/* [only works for 12] search the entire space for solutions */
static double best_E = 1.0e100, second_E = 1.0e100, third_E = 1.0e100;
static int best_route[N_CITIES];
static int second_route[N_CITIES];
static int third_route[N_CITIES];
static void do_all_perms(int *route, int n);
void exhaustive_search()
{
static int initial_route[N_CITIES] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
printf("\n# ");
fflush(stdout);
#if 0
system("date");
#endif
fflush(stdout);
do_all_perms(initial_route, 1);
printf("\n# ");
fflush(stdout);
#if 0
system("date");
#endif /* 0 */
fflush(stdout);
printf("# exhaustive best route: ");
Ptsp(best_route);
printf("\n# its energy is: %g\n", best_E);
printf("# exhaustive second_best route: ");
Ptsp(second_route);
printf("\n# its energy is: %g\n", second_E);
printf("# exhaustive third_best route: ");
Ptsp(third_route);
printf("\n# its energy is: %g\n", third_E);
}
/* James Theiler's recursive algorithm for generating all routes */
static void do_all_perms(int *route, int n)
{
if (n == (N_CITIES-1)) {
/* do it! calculate the energy/cost for that route */
double E;
E = Etsp(route); /* TSP energy function */
/* now save the best 3 energies and routes */
if (E < best_E) {
third_E = second_E;
memcpy(third_route, second_route, N_CITIES*sizeof(*route));
second_E = best_E;
memcpy(second_route, best_route, N_CITIES*sizeof(*route));
best_E = E;
memcpy(best_route, route, N_CITIES*sizeof(*route));
} else if (E < second_E) {
third_E = second_E;
memcpy(third_route, second_route, N_CITIES*sizeof(*route));
second_E = E;
memcpy(second_route, route, N_CITIES*sizeof(*route));
} else if (E < third_E) {
third_E = E;
memcpy(route, third_route, N_CITIES*sizeof(*route));
}
} else {
int new_route[N_CITIES];
unsigned int j;
int swap_tmp;
memcpy(new_route, route, N_CITIES*sizeof(*route));
for (j = n; j < N_CITIES; ++j) {
swap_tmp = new_route[j];
new_route[j] = new_route[n];
new_route[n] = swap_tmp;
do_all_perms(new_route, n+1);
}
}
}
|