File: specfunc-gegenbauer.rst

package info (click to toggle)
gsl-doc 2.6-1
  • links: PTS
  • area: non-free
  • in suites: bullseye
  • size: 30,000 kB
  • sloc: ansic: 255,377; sh: 11,468; makefile: 1,134; python: 68
file content (37 lines) | stat: -rw-r--r-- 1,755 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
.. index:: Gegenbauer functions

The Gegenbauer polynomials are defined in Abramowitz & Stegun, Chapter
22, where they are known as Ultraspherical polynomials.  The functions
described in this section are declared in the header file
:file:`gsl_sf_gegenbauer.h`.

.. function:: double gsl_sf_gegenpoly_1 (double lambda, double x)
              double gsl_sf_gegenpoly_2 (double lambda, double x)
              double gsl_sf_gegenpoly_3 (double lambda, double x)
              int gsl_sf_gegenpoly_1_e (double lambda, double x, gsl_sf_result * result)
              int gsl_sf_gegenpoly_2_e (double lambda, double x, gsl_sf_result * result)
              int gsl_sf_gegenpoly_3_e (double lambda, double x, gsl_sf_result * result)

   These functions evaluate the Gegenbauer polynomials
   :math:`C^{(\lambda)}_n(x)` using explicit
   representations for :math:`n = 1, 2, 3`.
.. Exceptional Return Values: none

.. function:: double gsl_sf_gegenpoly_n (int n, double lambda, double x)
              int gsl_sf_gegenpoly_n_e (int n, double lambda, double x, gsl_sf_result * result)

   These functions evaluate the Gegenbauer polynomial :math:`C^{(\lambda)}_n(x)`
   for a specific value of :data:`n`,
   :data:`lambda`, :data:`x` subject to :math:`\lambda > -1/2`, :math:`n \ge 0`.
.. Domain: lambda > -1/2, n >= 0
.. Exceptional Return Values: GSL_EDOM

.. function:: int gsl_sf_gegenpoly_array (int nmax, double lambda, double x, double result_array[])

   This function computes an array of Gegenbauer polynomials
   :math:`C^{(\lambda)}_n(x)`
   for :math:`n = 0, 1, 2, \dots, nmax`, subject
   to :math:`\lambda > -1/2`, :math:`nmax \ge 0`.
.. Conditions: n = 0, 1, 2, ... nmax
.. Domain: lambda > -1/2, nmax >= 0
.. Exceptional Return Values: GSL_EDOM