1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
/* test.c
*
* Copyright (C) 2018 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_bst.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_sort.h>
#include <gsl/gsl_test.h>
enum array_order
{
ORD_RANDOM = 0, /* random order */
ORD_ASCENDING, /* ascending order */
ORD_DESCENDING, /* descending order */
ORD_BALANCED, /* balanced tree order */
ORD_ZIGZAG, /* zig-zag order */
ORD_ASCENDING_SHIFTED, /* ascending from middle, then beginning */
ORD_END_NODUP, /* end of no-duplicate ordering */
ORD_RANDOM_DUP /* random order with duplicates */
};
/* fill array[] with random integers in [lower,upper] with duplicates allowed */
static void
random_integers(const size_t n, const int lower, const int upper,
int array[], gsl_rng * r)
{
size_t i;
for (i = 0; i < n; ++i)
array[i] = (int) ((upper - lower) * gsl_rng_uniform(r) + lower);
}
/* fills array[] with a random permutation of the integers between 0 and n - 1 */
static void
random_permuted_integers (const size_t n, int array[], gsl_rng * r)
{
size_t i;
for (i = 0; i < n; i++)
array[i] = i;
for (i = 0; i < n; i++)
{
size_t j = i + (unsigned) (gsl_rng_uniform(r) * (n - i));
int t = array[j];
array[j] = array[i];
array[i] = t;
}
}
static int
compare_ints(const void *pa, const void *pb, void *params)
{
const int *a = pa;
const int *b = pb;
(void) params;
return (*a < *b) ? -1 : (*a > *b);
}
/* Generates a list of integers that produce a balanced tree when
inserted in order into a binary tree in the usual way.
|min| and |max| inclusively bound the values to be inserted.
Output is deposited starting at |*array|. */
static void
gen_balanced_tree (const int min, const int max, int **array)
{
int i;
if (min > max)
return;
i = (min + max + 1) / 2;
*(*array)++ = i;
gen_balanced_tree (min, i - 1, array);
gen_balanced_tree (i + 1, max, array);
}
/* generates a permutation of the integers |0| to |n - 1| */
static void
gen_int_array (const size_t n, const enum array_order order, int array[], gsl_rng * r)
{
size_t i;
switch (order)
{
case ORD_RANDOM:
random_permuted_integers (n, array, r);
break;
case ORD_ASCENDING:
for (i = 0; i < n; i++)
array[i] = i;
break;
case ORD_DESCENDING:
for (i = 0; i < n; i++)
array[i] = n - i - 1;
break;
case ORD_BALANCED:
gen_balanced_tree (0, n - 1, &array);
break;
case ORD_ZIGZAG:
for (i = 0; i < n; i++)
{
if (i % 2 == 0)
array[i] = i / 2;
else
array[i] = n - i / 2 - 1;
}
break;
case ORD_ASCENDING_SHIFTED:
for (i = 0; i < n; i++)
{
array[i] = i + n / 2;
if ((size_t) array[i] >= n)
array[i] -= n;
}
break;
case ORD_RANDOM_DUP:
random_integers(n, -10, 10, array, r);
break;
default:
assert (0);
}
}
static void
check_traverser(const size_t n, const enum array_order order, gsl_bst_trav * trav, int data,
const char *desc, const gsl_bst_workspace * w)
{
int *prev, *cur, *next;
prev = gsl_bst_trav_prev(trav);
if (prev != NULL)
{
gsl_test(*prev > data, "bst %s[n=%zu,order=%d] %s traverser ahead of %d, but should be ahead of %d",
gsl_bst_name(w), n, order, desc, *prev, data);
}
gsl_bst_trav_next(trav);
cur = gsl_bst_trav_cur(trav);
gsl_test(*cur != data, "bst %s[n=%zu,order=%d] %s traverser at %d, but should be at %d",
gsl_bst_name(w), n, order, desc, *cur, data);
next = gsl_bst_trav_next(trav);
if (next != NULL)
{
gsl_test(*next < data, "bst %s[n=%zu,order=%d] %s traverser behind %d, but should be behind %d",
gsl_bst_name(w), n, order, desc, *next, data);
}
gsl_bst_trav_prev(trav);
}
static void
test_bst_int(const size_t n, const gsl_bst_type * T, const enum array_order order, gsl_rng * r)
{
int *data = malloc(n * sizeof(int));
int *data_delete = malloc(n * sizeof(int));
int *sorted_data = malloc(n * sizeof(int));
gsl_bst_workspace * w = gsl_bst_alloc(T, NULL, compare_ints, NULL);
gsl_bst_trav trav;
int *p;
int i;
size_t nodes;
/* generate data to be inserted in tree */
gen_int_array(n, order, data, r);
for (i = 0; i < (int) n; ++i)
sorted_data[i] = data[i];
gsl_sort_int(sorted_data, 1, n);
if (order != ORD_RANDOM_DUP)
{
/* generate random order to delete data from tree */
gen_int_array(n, ORD_RANDOM, data_delete, r);
}
else
{
for (i = 0; i < (int) n; ++i)
data_delete[i] = sorted_data[i];
}
/* insert data */
for (i = 0; i < (int) n; ++i)
{
p = gsl_bst_insert(&data[i], w);
gsl_test(p != NULL, "bst_int %s[n=%zu,order=%d] insert i=%d", gsl_bst_name(w), n, order, i);
}
if (order != ORD_RANDOM_DUP)
{
nodes = gsl_bst_nodes(w);
gsl_test(nodes != n, "bst_int %s[n=%zu,order=%d] after insertion count = %zu/%zu",
gsl_bst_name(w), n, order, nodes, n);
}
/* test data was inserted and can be found */
for (i = 0; i < (int) n; ++i)
{
p = gsl_bst_find(&data[i], w);
gsl_test(*p != data[i], "bst_int %s[n=%zu,order=%d] find [%d,%d]",
gsl_bst_name(w), n, order, *p, data[i]);
p = gsl_bst_trav_find(&data[i], &trav, w);
gsl_test(p == NULL, "bst_int %s[n=%zu,order=%d] trav_find unable to find item %d",
gsl_bst_name(w), n, order, data[i]);
check_traverser(n, order, &trav, data[i], "post-insertion", w);
}
/* traverse tree in-order */
p = gsl_bst_trav_first(&trav, w);
i = 0;
while (p != NULL)
{
int *q = gsl_bst_trav_cur(&trav);
gsl_test(*p != sorted_data[i], "bst_int %s[n=%zu,order=%d] traverse i=%d [%d,%d]",
gsl_bst_name(w), n, order, i, *p, sorted_data[i]);
gsl_test(*p != *q, "bst_int %s[n=%zu,order=%d] traverse cur i=%d [%d,%d]",
gsl_bst_name(w), n, order, i, *p, *q);
p = gsl_bst_trav_next(&trav);
++i;
}
gsl_test(i != (int) n, "bst_int %s[n=%zu,order=%d] traverse number=%d",
gsl_bst_name(w), n, order, i);
/* traverse tree in reverse order */
p = gsl_bst_trav_last(&trav, w);
i = n - 1;
while (p != NULL)
{
int *q = gsl_bst_trav_cur(&trav);
gsl_test(*p != sorted_data[i], "bst_int %s[n=%zu,order=%d] traverse reverse i=%d [%d,%d]",
gsl_bst_name(w), n, order, i, *p, sorted_data[i]);
gsl_test(*p != *q, "bst_int %s[n=%zu,order=%d] traverse reverse cur i=%d [%d,%d]",
gsl_bst_name(w), n, order, i, *p, *q);
p = gsl_bst_trav_prev(&trav);
--i;
}
gsl_test(i != -1, "bst_int %s[n=%zu,order=%d] traverse reverse number=%d",
gsl_bst_name(w), n, order, i);
/* test traversal during tree modifications */
for (i = 0; i < (int) n; ++i)
{
gsl_bst_trav x, y, z;
gsl_bst_trav_find(&data[i], &x, w);
check_traverser(n, order, &x, data[i], "pre-deletion", w);
if (data[i] == data_delete[i])
continue;
p = gsl_bst_remove(&data_delete[i], w);
gsl_test(*p != data_delete[i], "bst_int %s[n=%zu,order=%d] remove i=%d [%d,%d]",
gsl_bst_name(w), n, order, i, *p, data_delete[i]);
p = gsl_bst_trav_copy(&y, &x);
gsl_test(*p != data[i], "bst_int %s[n=%zu,order=%d] copy i=%d [%d,%d]",
gsl_bst_name(w), n, order, i, *p, data[i]);
/* re-insert item */
p = gsl_bst_trav_insert(&data_delete[i], &z, w);
check_traverser(n, order, &x, data[i], "post-deletion", w);
check_traverser(n, order, &y, data[i], "copied", w);
check_traverser(n, order, &z, data_delete[i], "insertion", w);
#if 0
/* delete again */
gsl_bst_remove(&data[i], w);
#endif
}
/* emmpty tree */
gsl_bst_empty(w);
nodes = gsl_bst_nodes(w);
gsl_test(nodes != 0, "bst_int %s[n=%zu,order=%d] empty count = %zu",
gsl_bst_name(w), n, order, nodes);
gsl_bst_free(w);
free(data);
free(data_delete);
free(sorted_data);
}
static void
test_bst(const gsl_bst_type * T, gsl_rng * r)
{
enum array_order order;
for (order = 0; order < ORD_END_NODUP; ++order)
{
test_bst_int(50, T, order, r);
test_bst_int(100, T, order, r);
test_bst_int(500, T, order, r);
}
}
int
main(void)
{
gsl_rng * r = gsl_rng_alloc(gsl_rng_default);
test_bst(gsl_bst_avl, r);
test_bst(gsl_bst_rb, r);
gsl_rng_free(r);
exit (gsl_test_summary());
}
|