1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
.. index:: complex numbers
***************
Complex Numbers
***************
The functions described in this chapter provide support for complex
numbers. The algorithms take care to avoid unnecessary intermediate
underflows and overflows, allowing the functions to be evaluated over
as much of the complex plane as possible.
.. FIXME: this still needs to be
.. done for the csc,sec,cot,csch,sech,coth functions
For multiple-valued functions the branch cuts have been chosen to follow
the conventions of Abramowitz and Stegun.
The functions return principal values which are
the same as those in GNU Calc, which in turn are the same as those in
"Common Lisp, The Language (Second Edition)" [#f1]_
and the HP-28/48 series of calculators.
The complex types are defined in the header file :file:`gsl_complex.h`,
while the corresponding complex functions and arithmetic operations are
defined in :file:`gsl_complex_math.h`.
.. index::
single: representations of complex numbers
single: polar form of complex numbers
single: gsl_complex
Representation of complex numbers
=================================
Complex numbers are represented using the type :code:`gsl_complex`. The
default interface defines :code:`gsl_complex` as::
typedef struct
{
double dat[2];
} gsl_complex;
The real and imaginary part are stored in contiguous elements of a two
element array. This eliminates any padding between the real and
imaginary parts, :code:`dat[0]` and :code:`dat[1]`, allowing the struct to
be mapped correctly onto packed complex arrays.
If a C compiler is available which supports the C11 standard,
and the :file:`<complex.h>` header file is included *prior* to :file:`gsl_complex.h`,
then :code:`gsl_complex` will be defined to be the native C complex type::
typedef double complex gsl_complex
This allows users to use :code:`gsl_complex` in ordinary operations such as::
gsl_complex x = 2 + 5 * I;
gsl_complex y = x + (3 - 4*I);
.. important::
Native C support for complex numbers was introduced in the C99 standard,
and additional functionality was added in C11. When :file:`<complex.h>`
is included in a user's program prior to :file:`gsl_complex.h`,
GSL uses the new C11 functionality to define the :macro:`GSL_REAL` and
:macro:`GSL_IMAG` macros. It does not appear possible to properly define
these macros using the C99 standard, and so using a C99 compiler will not define
:code:`gsl_complex` to the native complex type.
Some compilers, such as the gcc 4.8 series implement only a portion of the C11
standard and so they may fail to correctly compile GSL code when a user tries
to turn on native complex functionality. A workaround for this issue is to
either remove :file:`<complex.h>` from the include list, or add
:code:`-DGSL_COMPLEX_LEGACY` to the compiler flags, which will use the older
struct-based definition of :code:`gsl_complex`.
Complex number macros
=====================
The following C macros offer convenient ways to manipulate complex numbers.
.. macro::
GSL_REAL (z)
GSL_IMAG (z)
These macros return a memory location (lvalue) corresponding to the real and imaginary
parts respectively of the complex number :data:`z`. This allows users to perform
operations like::
gsl_complex x, y;
GSL_REAL(x) = 4;
GSL_IMAG(x) = 2;
GSL_REAL(y) = GSL_REAL(x);
GSL_IMAG(y) = GSL_REAL(x);
In other words, these macros can both read and write to the real and imaginary
parts of a complex variable.
.. macro:: GSL_SET_COMPLEX (zp, x, y)
This macro uses the Cartesian components (:data:`x`, :data:`y`) to set the
real and imaginary parts of the complex number pointed to by :data:`zp`.
For example::
GSL_SET_COMPLEX(&z, 3, 4)
sets :math:`z` to be :math:`3 + 4i`.
.. .. macro::
.. GSL_SET_REAL (zp,x)
.. GSL_SET_IMAG (zp,y)
.. These macros allow the real and imaginary parts of the complex number
.. pointed to by :data:`zp` to be set independently.
Assigning complex numbers
=========================
.. function:: gsl_complex gsl_complex_rect (double x, double y)
This function uses the rectangular Cartesian components
:math:`(x,y)` to return the complex number :math:`z = x + i y`.
An inline version of this function is used when :macro:`HAVE_INLINE`
is defined.
.. function:: gsl_complex gsl_complex_polar (double r, double theta)
This function returns the complex number :math:`z = r \exp(i \theta) = r
(\cos(\theta) + i \sin(\theta))` from the polar representation
(:data:`r`, :data:`theta`).
Properties of complex numbers
=============================
.. index:: argument of complex number
.. function:: double gsl_complex_arg (gsl_complex z)
This function returns the argument of the complex number :data:`z`,
:math:`\arg(z)`, where :math:`-\pi < \arg(z) <= \pi`.
.. index:: magnitude of complex number
.. function:: double gsl_complex_abs (gsl_complex z)
This function returns the magnitude of the complex number :data:`z`, :math:`|z|`.
.. function:: double gsl_complex_abs2 (gsl_complex z)
This function returns the squared magnitude of the complex number
:data:`z`, :math:`|z|^2`.
.. function:: double gsl_complex_logabs (gsl_complex z)
This function returns the natural logarithm of the magnitude of the
complex number :data:`z`, :math:`\log|z|`. It allows an accurate
evaluation of :math:`\log|z|` when :math:`|z|` is close to one. The direct
evaluation of :code:`log(gsl_complex_abs(z))` would lead to a loss of
precision in this case.
.. index:: complex arithmetic
Complex arithmetic operators
============================
.. function:: gsl_complex gsl_complex_add (gsl_complex a, gsl_complex b)
This function returns the sum of the complex numbers :data:`a` and
:data:`b`, :math:`z=a+b`.
.. function:: gsl_complex gsl_complex_sub (gsl_complex a, gsl_complex b)
This function returns the difference of the complex numbers :data:`a` and
:data:`b`, :math:`z=a-b`.
.. function:: gsl_complex gsl_complex_mul (gsl_complex a, gsl_complex b)
This function returns the product of the complex numbers :data:`a` and
:data:`b`, :math:`z=ab`.
.. function:: gsl_complex gsl_complex_div (gsl_complex a, gsl_complex b)
This function returns the quotient of the complex numbers :data:`a` and
:data:`b`, :math:`z=a/b`.
.. function:: gsl_complex gsl_complex_add_real (gsl_complex a, double x)
This function returns the sum of the complex number :data:`a` and the
real number :data:`x`, :math:`z=a+x`.
.. function:: gsl_complex gsl_complex_sub_real (gsl_complex a, double x)
This function returns the difference of the complex number :data:`a` and the
real number :data:`x`, :math:`z=a-x`.
.. function:: gsl_complex gsl_complex_mul_real (gsl_complex a, double x)
This function returns the product of the complex number :data:`a` and the
real number :data:`x`, :math:`z=ax`.
.. function:: gsl_complex gsl_complex_div_real (gsl_complex a, double x)
This function returns the quotient of the complex number :data:`a` and the
real number :data:`x`, :math:`z=a/x`.
.. function:: gsl_complex gsl_complex_add_imag (gsl_complex a, double y)
This function returns the sum of the complex number :data:`a` and the
imaginary number :math:`iy`, :math:`z=a+iy`.
.. function:: gsl_complex gsl_complex_sub_imag (gsl_complex a, double y)
This function returns the difference of the complex number :data:`a` and the
imaginary number :math:`iy`, :math:`z=a-iy`.
.. function:: gsl_complex gsl_complex_mul_imag (gsl_complex a, double y)
This function returns the product of the complex number :data:`a` and the
imaginary number :math:`iy`, :math:`z=a*(iy)`.
.. function:: gsl_complex gsl_complex_div_imag (gsl_complex a, double y)
This function returns the quotient of the complex number :data:`a` and the
imaginary number :math:`iy`, :math:`z=a/(iy)`.
.. index:: conjugate of complex number
.. function:: gsl_complex gsl_complex_conjugate (gsl_complex z)
This function returns the complex conjugate of the complex number
:data:`z`, :math:`z^* = x - i y`.
.. function:: gsl_complex gsl_complex_inverse (gsl_complex z)
This function returns the inverse, or reciprocal, of the complex number
:data:`z`, :math:`1/z = (x - i y)/(x^2 + y^2)`.
.. function:: gsl_complex gsl_complex_negative (gsl_complex z)
This function returns the negative of the complex number
:data:`z`, :math:`-z = (-x) + i(-y)`.
Elementary Complex Functions
============================
.. index:: square root of complex number
.. function:: gsl_complex gsl_complex_sqrt (gsl_complex z)
This function returns the square root of the complex number :data:`z`,
:math:`\sqrt z`. The branch cut is the negative real axis. The result
always lies in the right half of the complex plane.
.. function:: gsl_complex gsl_complex_sqrt_real (double x)
This function returns the complex square root of the real number
:data:`x`, where :data:`x` may be negative.
.. index::
single: power of complex number
single: exponentiation of complex number
.. function:: gsl_complex gsl_complex_pow (gsl_complex z, gsl_complex a)
The function returns the complex number :data:`z` raised to the complex
power :data:`a`, :math:`z^a`. This is computed as :math:`\exp(\log(z)*a)`
using complex logarithms and complex exponentials.
.. function:: gsl_complex gsl_complex_pow_real (gsl_complex z, double x)
This function returns the complex number :data:`z` raised to the real
power :data:`x`, :math:`z^x`.
.. function:: gsl_complex gsl_complex_exp (gsl_complex z)
This function returns the complex exponential of the complex number
:data:`z`, :math:`\exp(z)`.
.. index:: logarithm of complex number
.. function:: gsl_complex gsl_complex_log (gsl_complex z)
This function returns the complex natural logarithm (base :math:`e`) of
the complex number :data:`z`, :math:`\log(z)`. The branch cut is the
negative real axis.
.. function:: gsl_complex gsl_complex_log10 (gsl_complex z)
This function returns the complex base-10 logarithm of
the complex number :data:`z`, :math:`\log_{10} (z)`.
.. function:: gsl_complex gsl_complex_log_b (gsl_complex z, gsl_complex b)
This function returns the complex base-:data:`b` logarithm of the complex
number :data:`z`, :math:`\log_b(z)`. This quantity is computed as the ratio
:math:`\log(z)/\log(b)`.
.. index:: trigonometric functions of complex numbers
Complex Trigonometric Functions
===============================
.. index::
single: sin, of complex number
.. function:: gsl_complex gsl_complex_sin (gsl_complex z)
This function returns the complex sine of the complex number :data:`z`,
:math:`\sin(z) = (\exp(iz) - \exp(-iz))/(2i)`.
.. index:: cosine of complex number
.. function:: gsl_complex gsl_complex_cos (gsl_complex z)
This function returns the complex cosine of the complex number :data:`z`,
:math:`\cos(z) = (\exp(iz) + \exp(-iz))/2`.
.. index:: tangent of complex number
.. function:: gsl_complex gsl_complex_tan (gsl_complex z)
This function returns the complex tangent of the complex number :data:`z`,
:math:`\tan(z) = \sin(z)/\cos(z)`.
.. function:: gsl_complex gsl_complex_sec (gsl_complex z)
This function returns the complex secant of the complex number :data:`z`,
:math:`\sec(z) = 1/\cos(z)`.
.. function:: gsl_complex gsl_complex_csc (gsl_complex z)
This function returns the complex cosecant of the complex number :data:`z`,
:math:`\csc(z) = 1/\sin(z)`.
.. function:: gsl_complex gsl_complex_cot (gsl_complex z)
This function returns the complex cotangent of the complex number :data:`z`,
:math:`\cot(z) = 1/\tan(z)`.
.. index:: inverse complex trigonometric functions
Inverse Complex Trigonometric Functions
=======================================
.. function:: gsl_complex gsl_complex_arcsin (gsl_complex z)
This function returns the complex arcsine of the complex number :data:`z`,
:math:`\arcsin(z)`. The branch cuts are on the real axis, less than :math:`-1`
and greater than :math:`1`.
.. function:: gsl_complex gsl_complex_arcsin_real (double z)
This function returns the complex arcsine of the real number :data:`z`,
:math:`\arcsin(z)`. For :math:`z` between :math:`-1` and :math:`1`, the
function returns a real value in the range :math:`[-\pi/2,\pi/2]`. For
:math:`z` less than :math:`-1` the result has a real part of :math:`-\pi/2`
and a positive imaginary part. For :math:`z` greater than :math:`1` the
result has a real part of :math:`\pi/2` and a negative imaginary part.
.. function:: gsl_complex gsl_complex_arccos (gsl_complex z)
This function returns the complex arccosine of the complex number :data:`z`,
:math:`\arccos(z)`. The branch cuts are on the real axis, less than :math:`-1`
and greater than :math:`1`.
.. function:: gsl_complex gsl_complex_arccos_real (double z)
This function returns the complex arccosine of the real number :data:`z`,
:math:`\arccos(z)`. For :math:`z` between :math:`-1` and :math:`1`, the
function returns a real value in the range :math:`[0,\pi]`. For :math:`z`
less than :math:`-1` the result has a real part of :math:`\pi` and a
negative imaginary part. For :math:`z` greater than :math:`1` the result
is purely imaginary and positive.
.. function:: gsl_complex gsl_complex_arctan (gsl_complex z)
This function returns the complex arctangent of the complex number
:data:`z`, :math:`\arctan(z)`. The branch cuts are on the imaginary axis,
below :math:`-i` and above :math:`i`.
.. function:: gsl_complex gsl_complex_arcsec (gsl_complex z)
This function returns the complex arcsecant of the complex number :data:`z`,
:math:`\arcsec(z) = \arccos(1/z)`.
.. function:: gsl_complex gsl_complex_arcsec_real (double z)
This function returns the complex arcsecant of the real number :data:`z`,
:math:`\arcsec(z) = \arccos(1/z)`.
.. function:: gsl_complex gsl_complex_arccsc (gsl_complex z)
This function returns the complex arccosecant of the complex number :data:`z`,
:math:`\arccsc(z) = \arcsin(1/z)`.
.. function:: gsl_complex gsl_complex_arccsc_real (double z)
This function returns the complex arccosecant of the real number :data:`z`,
:math:`\arccsc(z) = \arcsin(1/z)`.
.. function:: gsl_complex gsl_complex_arccot (gsl_complex z)
This function returns the complex arccotangent of the complex number :data:`z`,
:math:`\arccot(z) = \arctan(1/z)`.
.. index::
single: hyperbolic functions, complex numbers
Complex Hyperbolic Functions
============================
.. function:: gsl_complex gsl_complex_sinh (gsl_complex z)
This function returns the complex hyperbolic sine of the complex number
:data:`z`, :math:`\sinh(z) = (\exp(z) - \exp(-z))/2`.
.. function:: gsl_complex gsl_complex_cosh (gsl_complex z)
This function returns the complex hyperbolic cosine of the complex number
:data:`z`, :math:`\cosh(z) = (\exp(z) + \exp(-z))/2`.
.. function:: gsl_complex gsl_complex_tanh (gsl_complex z)
This function returns the complex hyperbolic tangent of the complex number
:data:`z`, :math:`\tanh(z) = \sinh(z)/\cosh(z)`.
.. function:: gsl_complex gsl_complex_sech (gsl_complex z)
This function returns the complex hyperbolic secant of the complex
number :data:`z`, :math:`\sech(z) = 1/\cosh(z)`.
.. function:: gsl_complex gsl_complex_csch (gsl_complex z)
This function returns the complex hyperbolic cosecant of the complex
number :data:`z`, :math:`\csch(z) = 1/\sinh(z)`.
.. function:: gsl_complex gsl_complex_coth (gsl_complex z)
This function returns the complex hyperbolic cotangent of the complex
number :data:`z`, :math:`\coth(z) = 1/\tanh(z)`.
.. index::
single: inverse hyperbolic functions, complex numbers
Inverse Complex Hyperbolic Functions
====================================
.. function:: gsl_complex gsl_complex_arcsinh (gsl_complex z)
This function returns the complex hyperbolic arcsine of the
complex number :data:`z`, :math:`\arcsinh(z)`. The branch cuts are on the
imaginary axis, below :math:`-i` and above :math:`i`.
.. function:: gsl_complex gsl_complex_arccosh (gsl_complex z)
This function returns the complex hyperbolic arccosine of the complex
number :data:`z`, :math:`\arccosh(z)`. The branch cut is on the real
axis, less than :math:`1`. Note that in this case we use the negative
square root in formula 4.6.21 of Abramowitz & Stegun giving
:math:`\arccosh(z)=\log(z-\sqrt{z^2-1})`.
.. function:: gsl_complex gsl_complex_arccosh_real (double z)
This function returns the complex hyperbolic arccosine of
the real number :data:`z`, :math:`\arccosh(z)`.
.. function:: gsl_complex gsl_complex_arctanh (gsl_complex z)
This function returns the complex hyperbolic arctangent of the complex
number :data:`z`, :math:`\arctanh(z)`. The branch cuts are on the real
axis, less than :math:`-1` and greater than :math:`1`.
.. function:: gsl_complex gsl_complex_arctanh_real (double z)
This function returns the complex hyperbolic arctangent of the real
number :data:`z`, :math:`\arctanh(z)`.
.. function:: gsl_complex gsl_complex_arcsech (gsl_complex z)
This function returns the complex hyperbolic arcsecant of the complex
number :data:`z`, :math:`\arcsech(z) = \arccosh(1/z)`.
.. function:: gsl_complex gsl_complex_arccsch (gsl_complex z)
This function returns the complex hyperbolic arccosecant of the complex
number :data:`z`, :math:`\arccsch(z) = \arcsinh(1/z)`.
.. function:: gsl_complex gsl_complex_arccoth (gsl_complex z)
This function returns the complex hyperbolic arccotangent of the complex
number :data:`z`, :math:`\arccoth(z) = \arctanh(1/z)`.
References and Further Reading
==============================
The implementations of the elementary and trigonometric functions are
based on the following papers,
* T. E. Hull, Thomas F. Fairgrieve, Ping Tak Peter Tang,
"Implementing Complex Elementary Functions Using Exception
Handling", ACM Transactions on Mathematical Software, Volume 20
(1994), pp 215--244, Corrigenda, p553
* T. E. Hull, Thomas F. Fairgrieve, Ping Tak Peter Tang,
"Implementing the complex arcsin and arccosine functions using exception
handling", ACM Transactions on Mathematical Software, Volume 23
(1997) pp 299--335
The general formulas and details of branch cuts can be found in the
following books,
* Abramowitz and Stegun, Handbook of Mathematical Functions,
"Circular Functions in Terms of Real and Imaginary Parts", Formulas
4.3.55--58,
"Inverse Circular Functions in Terms of Real and Imaginary Parts",
Formulas 4.4.37--39,
"Hyperbolic Functions in Terms of Real and Imaginary Parts",
Formulas 4.5.49--52,
"Inverse Hyperbolic Functions---relation to Inverse Circular Functions",
Formulas 4.6.14--19.
* Dave Gillespie, Calc Manual, Free Software Foundation, ISBN
1-882114-18-3
.. rubric:: Footnotes
.. [#f1] Note that the first edition uses different definitions.
|