File: specfunc-hyperg.rst

package info (click to toggle)
gsl-doc 2.7.1-1
  • links: PTS
  • area: non-free
  • in suites: bookworm, forky, sid, trixie
  • size: 30,572 kB
  • sloc: ansic: 259,459; sh: 4,568; makefile: 1,136; python: 69
file content (176 lines) | stat: -rw-r--r-- 5,506 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
.. index::
   single: hypergeometric functions
   single: confluent hypergeometric functions

Hypergeometric functions are described in Abramowitz & Stegun, Chapters
13 and 15.  These functions are declared in the header file
:file:`gsl_sf_hyperg.h`.

.. function:: double gsl_sf_hyperg_0F1 (double c, double x)
              int gsl_sf_hyperg_0F1_e (double c, double x, gsl_sf_result * result)

   These routines compute the hypergeometric function
   
   .. only:: not texinfo
      
      .. math:: {}_0F_1(c,x)

   .. only:: texinfo

      .. math:: 0F1(c,x)

.. It is related to Bessel functions
.. 0F1[c,x] =
..   Gamma[c]    x^(1/2(1-c)) I_(c-1)(2 Sqrt[x])
..   Gamma[c] (-x)^(1/2(1-c)) J_(c-1)(2 Sqrt[-x])
.. exceptions: GSL_EOVRFLW, GSL_EUNDRFLW

.. function:: double gsl_sf_hyperg_1F1_int (int m, int n, double x)
              int gsl_sf_hyperg_1F1_int_e (int m, int n, double x, gsl_sf_result * result)

   These routines compute the confluent hypergeometric function

   .. only:: not texinfo

      .. math:: {}_1F_1(m,n,x) = M(m,n,x)

   .. only:: texinfo

      .. math:: 1F1(m,n,x) = M(m,n,x)

   for integer parameters :data:`m`, :data:`n`.
.. exceptions: 

.. function:: double gsl_sf_hyperg_1F1 (double a, double b, double x)
              int gsl_sf_hyperg_1F1_e (double a, double b, double x, gsl_sf_result * result)

   These routines compute the confluent hypergeometric function

   .. only:: not texinfo

      .. math:: {}_1F_1(a,b,x) = M(a,b,x)

   .. only:: texinfo

      .. math:: 1F1(a,b,x) = M(a,b,x)

   for general parameters :data:`a`, :data:`b`.
.. exceptions:

.. function:: double gsl_sf_hyperg_U_int (int m, int n, double x)
              int gsl_sf_hyperg_U_int_e (int m, int n, double x, gsl_sf_result * result)

   These routines compute the confluent hypergeometric function
   :math:`U(m,n,x)` for integer parameters :data:`m`, :data:`n`.
.. exceptions:

.. function:: int gsl_sf_hyperg_U_int_e10_e (int m, int n, double x, gsl_sf_result_e10 * result)

   This routine computes the confluent hypergeometric function
   :math:`U(m,n,x)` for integer parameters :data:`m`, :data:`n` using the
   :type:`gsl_sf_result_e10` type to return a result with extended range.

.. function:: double gsl_sf_hyperg_U (double a, double b, double x)
              int gsl_sf_hyperg_U_e (double a, double b, double x, gsl_sf_result * result)

   These routines compute the confluent hypergeometric function :math:`U(a,b,x)`.
.. exceptions:

.. function:: int gsl_sf_hyperg_U_e10_e (double a, double b, double x, gsl_sf_result_e10 * result)

   This routine computes the confluent hypergeometric function
   :math:`U(a,b,x)` using the :type:`gsl_sf_result_e10` type to return a
   result with extended range. 
.. exceptions:

.. function:: double gsl_sf_hyperg_2F1 (double a, double b, double c, double x)
              int gsl_sf_hyperg_2F1_e (double a, double b, double c, double x, gsl_sf_result * result)

   These routines compute the Gauss hypergeometric function

   .. only:: not texinfo

      .. math:: {}_2F_1(a,b,c,x) = F(a,b,c,x)

   .. only:: texinfo

      .. math:: 2F1(a,b,c,x) = F(a,b,c,x)
         
   for :math:`|x| < 1`. If the arguments :math:`(a,b,c,x)` are too close to a singularity then
   the function can return the error code :macro:`GSL_EMAXITER` when the
   series approximation converges too slowly.  This occurs in the region of
   :math:`x = 1`, :math:`c - a - b = m` for integer m.
.. exceptions:

.. function:: double gsl_sf_hyperg_2F1_conj (double aR, double aI, double c, double x)
              int gsl_sf_hyperg_2F1_conj_e (double aR, double aI, double c, double x, gsl_sf_result * result)

   These routines compute the Gauss hypergeometric function

   .. only:: not texinfo

      .. math:: {}_2F_1(a_R + i a_I, aR - i aI, c, x)

   .. only:: texinfo

      .. math:: 2F1(a_R + i a_I, aR - i aI, c, x)

   with complex parameters for :math:`|x| < 1`.

.. function:: double gsl_sf_hyperg_2F1_renorm (double a, double b, double c, double x)
              int gsl_sf_hyperg_2F1_renorm_e (double a, double b, double c, double x, gsl_sf_result * result)

   These routines compute the renormalized Gauss hypergeometric function

   .. only:: not texinfo

      .. math:: {}_2F_1(a,b,c,x) / \Gamma(c)

   .. only:: texinfo

      .. math:: 2F1(a,b,c,x) / \Gamma(c)

   for :math:`|x| < 1`.
.. exceptions:

.. function:: double gsl_sf_hyperg_2F1_conj_renorm (double aR, double aI, double c, double x)
              int gsl_sf_hyperg_2F1_conj_renorm_e (double aR, double aI, double c, double x, gsl_sf_result * result)

   These routines compute the renormalized Gauss hypergeometric function

   .. only:: not texinfo

      .. math:: {}_2F_1(a_R + i a_I, a_R - i a_I, c, x) / \Gamma(c)

   .. only:: texinfo

      .. math:: 2F1(a_R + i a_I, a_R - i a_I, c, x) / \Gamma(c)

   for :math:`|x| < 1`.
.. exceptions:

.. function:: double gsl_sf_hyperg_2F0 (double a, double b, double x)
              int gsl_sf_hyperg_2F0_e (double a, double b, double x, gsl_sf_result * result)

   These routines compute the hypergeometric function
   
   .. only:: not texinfo
      
      .. math:: {}_2F_0(a,b,x)

   .. only:: texinfo

      .. math:: 2F0(a,b,x)

   The series representation is a divergent hypergeometric series.
   However, for :math:`x < 0` we have 

   .. only:: not texinfo

      .. math:: {}_2F_0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)

   .. only:: texinfo

      .. math:: 2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)

.. exceptions: GSL_EDOM