1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
/* multifit/convergence.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_multifit_nlin.h>
#include <gsl/gsl_blas.h>
static double scaled_infnorm(const gsl_vector *x, const gsl_vector *g);
/*
gsl_multifit_fdfsolver_test()
Convergence tests for nonlinear minimization
(1) |dx_i| <= xtol * (1 + |x_i|) for all i
(2) || g .* x ||_inf <= gtol ||f||^2
(3) ||f(x+dx) - f(x)|| <= ftol * max(||f(x)||, 1)
Inputs: s - fdfsolver
xtol - tolerance for step size
gtol - tolerance for gradient vector
ftol - tolerance for residual vector
info - (output)
1 - stopped by small x step
2 - stopped by small gradient
3 - stopped by small residual vector change
*/
int
gsl_multifit_fdfsolver_test (const gsl_multifit_fdfsolver * s,
const double xtol, const double gtol,
const double ftol, int *info)
{
int status;
double gnorm, fnorm, phi;
*info = 0;
status = gsl_multifit_test_delta(s->dx, s->x, xtol*xtol, xtol);
if (status == GSL_SUCCESS)
{
*info = 1;
return GSL_SUCCESS;
}
/* compute gradient g = J^T f */
(s->type->gradient) (s->state, s->g);
/* compute gnorm = max_i( g_i * max(x_i, 1) ) */
gnorm = scaled_infnorm(s->x, s->g);
/* compute fnorm = ||f|| */
fnorm = gsl_blas_dnrm2(s->f);
phi = 0.5 * fnorm * fnorm;
if (gnorm <= gtol * GSL_MAX(phi, 1.0))
{
*info = 2;
return GSL_SUCCESS;
}
#if 0
if (dfnorm <= ftol * GSL_MAX(fnorm, 1.0))
{
*info = 3;
return GSL_SUCCESS;
}
#endif
return GSL_CONTINUE;
} /* gsl_multifit_fdfsolver_test() */
int
gsl_multifit_test_delta (const gsl_vector * dx, const gsl_vector * x,
double epsabs, double epsrel)
{
size_t i;
int ok = 1;
const size_t n = x->size ;
if (epsrel < 0.0)
{
GSL_ERROR ("relative tolerance is negative", GSL_EBADTOL);
}
for (i = 0 ; i < n ; i++)
{
double xi = gsl_vector_get(x,i);
double dxi = gsl_vector_get(dx,i);
double tolerance = epsabs + epsrel * fabs(xi) ;
if (fabs(dxi) < tolerance)
{
ok = 1;
}
else
{
ok = 0;
break;
}
}
if (ok)
return GSL_SUCCESS ;
return GSL_CONTINUE;
}
int
gsl_multifit_test_gradient (const gsl_vector * g, double epsabs)
{
size_t i;
double residual = 0;
const size_t n = g->size;
if (epsabs < 0.0)
{
GSL_ERROR ("absolute tolerance is negative", GSL_EBADTOL);
}
for (i = 0 ; i < n ; i++)
{
double gi = gsl_vector_get(g, i);
residual += fabs(gi);
}
if (residual < epsabs)
{
return GSL_SUCCESS;
}
return GSL_CONTINUE ;
}
static double
scaled_infnorm(const gsl_vector *x, const gsl_vector *g)
{
const size_t n = x->size;
size_t i;
double norm = 0.0;
for (i = 0; i < n; ++i)
{
double xi = GSL_MAX(gsl_vector_get(x, i), 1.0);
double gi = gsl_vector_get(g, i);
double tmp = fabs(xi * gi);
if (tmp > norm)
norm = tmp;
}
return norm;
}
|