File: Approximate-Comparison-of-Floating-Point-Numbers.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (78 lines) | stat: -rw-r--r-- 3,987 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
<html lang="en">
<head>
<title>Approximate Comparison of Floating Point Numbers - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Mathematical-Functions.html" title="Mathematical Functions">
<link rel="prev" href="Maximum-and-Minimum-functions.html" title="Maximum and Minimum functions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Approximate-Comparison-of-Floating-Point-Numbers"></a>
Previous:&nbsp;<a rel="previous" accesskey="p" href="Maximum-and-Minimum-functions.html">Maximum and Minimum functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Mathematical-Functions.html">Mathematical Functions</a>
<hr>
</div>

<h3 class="section">4.8 Approximate Comparison of Floating Point Numbers</h3>

<p>It is sometimes useful to be able to compare two floating point numbers
approximately, to allow for rounding and truncation errors.  The following
function implements the approximate floating-point comparison algorithm
proposed by D.E. Knuth in Section 4.2.2 of <cite>Seminumerical
Algorithms</cite> (3rd edition).

<div class="defun">
&mdash; Function: int <b>gsl_fcmp</b> (<var>double x, double y, double epsilon</var>)<var><a name="index-gsl_005ffcmp-132"></a></var><br>
<blockquote><p><a name="index-approximate-comparison-of-floating-point-numbers-133"></a><a name="index-safe-comparison-of-floating-point-numbers-134"></a><a name="index-floating-point-numbers_002c-approximate-comparison-135"></a>This function determines whether x and y are approximately
equal to a relative accuracy <var>epsilon</var>.

        <p>The relative accuracy is measured using an interval of size 2
\delta, where \delta = 2^k \epsilon and k is the
maximum base-2 exponent of x and y as computed by the
function <code>frexp</code>.

        <p>If x and y lie within this interval, they are considered
approximately equal and the function returns 0. Otherwise if x &lt;
y, the function returns -1, or if x &gt; y, the function returns
+1.

        <p>Note that x and y are compared to relative accuracy, so
this function is not suitable for testing whether a value is
approximately zero.

        <p>The implementation is based on the package <code>fcmp</code> by T.C. Belding. 
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>