1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
<html lang="en">
<head>
<title>Coulomb Wave Functions - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Coulomb-Functions.html" title="Coulomb Functions">
<link rel="prev" href="Normalized-Hydrogenic-Bound-States.html" title="Normalized Hydrogenic Bound States">
<link rel="next" href="Coulomb-Wave-Function-Normalization-Constant.html" title="Coulomb Wave Function Normalization Constant">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Coulomb-Wave-Functions"></a>
Next: <a rel="next" accesskey="n" href="Coulomb-Wave-Function-Normalization-Constant.html">Coulomb Wave Function Normalization Constant</a>,
Previous: <a rel="previous" accesskey="p" href="Normalized-Hydrogenic-Bound-States.html">Normalized Hydrogenic Bound States</a>,
Up: <a rel="up" accesskey="u" href="Coulomb-Functions.html">Coulomb Functions</a>
<hr>
</div>
<h4 class="subsection">7.7.2 Coulomb Wave Functions</h4>
<p>The Coulomb wave functions F_L(\eta,x), G_L(\eta,x) are
described in Abramowitz & Stegun, Chapter 14. Because there can be a
large dynamic range of values for these functions, overflows are handled
gracefully. If an overflow occurs, <code>GSL_EOVRFLW</code> is signalled and
exponent(s) are returned through the modifiable parameters <var>exp_F</var>,
<var>exp_G</var>. The full solution can be reconstructed from the following
relations,
<pre class="example"> F_L(eta,x) = fc[k_L] * exp(exp_F)
G_L(eta,x) = gc[k_L] * exp(exp_G)
F_L'(eta,x) = fcp[k_L] * exp(exp_F)
G_L'(eta,x) = gcp[k_L] * exp(exp_G)
</pre>
<p class="noindent">
<div class="defun">
— Function: int <b>gsl_sf_coulomb_wave_FG_e</b> (<var>double eta, double x, double L_F, int k, gsl_sf_result * F, gsl_sf_result * Fp, gsl_sf_result * G, gsl_sf_result * Gp, double * exp_F, double * exp_G</var>)<var><a name="index-gsl_005fsf_005fcoulomb_005fwave_005fFG_005fe-398"></a></var><br>
<blockquote><p>This function computes the Coulomb wave functions F_L(\eta,x),
<!-- {$G_{L-k}(\eta,x)$} -->
G_{L-k}(\eta,x) and their derivatives
F'_L(\eta,x),
<!-- {$G'_{L-k}(\eta,x)$} -->
G'_{L-k}(\eta,x)
with respect to x. The parameters are restricted to L,
L-k > -1/2, x > 0 and integer k. Note that L
itself is not restricted to being an integer. The results are stored in
the parameters <var>F</var>, <var>G</var> for the function values and <var>Fp</var>,
<var>Gp</var> for the derivative values. If an overflow occurs,
<code>GSL_EOVRFLW</code> is returned and scaling exponents are stored in
the modifiable parameters <var>exp_F</var>, <var>exp_G</var>.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_sf_coulomb_wave_F_array</b> (<var>double L_min, int kmax, double eta, double x, double fc_array</var>[]<var>, double * F_exponent</var>)<var><a name="index-gsl_005fsf_005fcoulomb_005fwave_005fF_005farray-399"></a></var><br>
<blockquote><p>This function computes the Coulomb wave function F_L(\eta,x) for
L = Lmin \dots Lmin + kmax, storing the results in <var>fc_array</var>.
In the case of overflow the exponent is stored in <var>F_exponent</var>.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_sf_coulomb_wave_FG_array</b> (<var>double L_min, int kmax, double eta, double x, double fc_array</var>[]<var>, double gc_array</var>[]<var>, double * F_exponent, double * G_exponent</var>)<var><a name="index-gsl_005fsf_005fcoulomb_005fwave_005fFG_005farray-400"></a></var><br>
<blockquote><p>This function computes the functions F_L(\eta,x),
G_L(\eta,x) for L = Lmin \dots Lmin + kmax storing the
results in <var>fc_array</var> and <var>gc_array</var>. In the case of overflow the
exponents are stored in <var>F_exponent</var> and <var>G_exponent</var>.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_sf_coulomb_wave_FGp_array</b> (<var>double L_min, int kmax, double eta, double x, double fc_array</var>[]<var>, double fcp_array</var>[]<var>, double gc_array</var>[]<var>, double gcp_array</var>[]<var>, double * F_exponent, double * G_exponent</var>)<var><a name="index-gsl_005fsf_005fcoulomb_005fwave_005fFGp_005farray-401"></a></var><br>
<blockquote><p>This function computes the functions F_L(\eta,x),
G_L(\eta,x) and their derivatives F'_L(\eta,x),
G'_L(\eta,x) for L = Lmin \dots Lmin + kmax storing the
results in <var>fc_array</var>, <var>gc_array</var>, <var>fcp_array</var> and <var>gcp_array</var>.
In the case of overflow the exponents are stored in <var>F_exponent</var>
and <var>G_exponent</var>.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_sf_coulomb_wave_sphF_array</b> (<var>double L_min, int kmax, double eta, double x, double fc_array</var>[]<var>, double F_exponent</var>[])<var><a name="index-gsl_005fsf_005fcoulomb_005fwave_005fsphF_005farray-402"></a></var><br>
<blockquote><p>This function computes the Coulomb wave function divided by the argument
F_L(\eta, x)/x for L = Lmin \dots Lmin + kmax, storing the
results in <var>fc_array</var>. In the case of overflow the exponent is
stored in <var>F_exponent</var>. This function reduces to spherical Bessel
functions in the limit \eta \to 0.
</p></blockquote></div>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|