File: Debye-Functions.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (109 lines) | stat: -rw-r--r-- 5,948 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
<html lang="en">
<head>
<title>Debye Functions - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Special-Functions.html" title="Special Functions">
<link rel="prev" href="Dawson-Function.html" title="Dawson Function">
<link rel="next" href="Dilogarithm.html" title="Dilogarithm">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Debye-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Dilogarithm.html">Dilogarithm</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Dawson-Function.html">Dawson Function</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Special-Functions.html">Special Functions</a>
<hr>
</div>

<h3 class="section">7.10 Debye Functions</h3>

<p><a name="index-Debye-functions-420"></a>
The Debye functions D_n(x) are defined by the following integral,

<pre class="example">     D_n(x) = n/x^n \int_0^x dt (t^n/(e^t - 1))
</pre>
   <p class="noindent">For further information see Abramowitz &amp;
Stegun, Section 27.1.  The Debye functions are declared in the header
file <samp><span class="file">gsl_sf_debye.h</span></samp>.

<div class="defun">
&mdash; Function: double <b>gsl_sf_debye_1</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005fdebye_005f1-421"></a></var><br>
&mdash; Function: int <b>gsl_sf_debye_1_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fdebye_005f1_005fe-422"></a></var><br>
<blockquote><p>These routines compute the first-order Debye function
D_1(x) = (1/x) \int_0^x dt (t/(e^t - 1)). 
<!-- Exceptional Return Values: GSL_EDOM -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_debye_2</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005fdebye_005f2-423"></a></var><br>
&mdash; Function: int <b>gsl_sf_debye_2_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fdebye_005f2_005fe-424"></a></var><br>
<blockquote><p>These routines compute the second-order Debye function
D_2(x) = (2/x^2) \int_0^x dt (t^2/(e^t - 1)). 
<!-- Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_debye_3</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005fdebye_005f3-425"></a></var><br>
&mdash; Function: int <b>gsl_sf_debye_3_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fdebye_005f3_005fe-426"></a></var><br>
<blockquote><p>These routines compute the third-order Debye function
D_3(x) = (3/x^3) \int_0^x dt (t^3/(e^t - 1)). 
<!-- Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_debye_4</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005fdebye_005f4-427"></a></var><br>
&mdash; Function: int <b>gsl_sf_debye_4_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fdebye_005f4_005fe-428"></a></var><br>
<blockquote><p>These routines compute the fourth-order Debye function
D_4(x) = (4/x^4) \int_0^x dt (t^4/(e^t - 1)). 
<!-- Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_debye_5</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005fdebye_005f5-429"></a></var><br>
&mdash; Function: int <b>gsl_sf_debye_5_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fdebye_005f5_005fe-430"></a></var><br>
<blockquote><p>These routines compute the fifth-order Debye function
D_5(x) = (5/x^5) \int_0^x dt (t^5/(e^t - 1)). 
<!-- Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_debye_6</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005fdebye_005f6-431"></a></var><br>
&mdash; Function: int <b>gsl_sf_debye_6_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fdebye_005f6_005fe-432"></a></var><br>
<blockquote><p>These routines compute the sixth-order Debye function
D_6(x) = (6/x^6) \int_0^x dt (t^6/(e^t - 1)). 
<!-- Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW -->
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>