File: Defining-the-ODE-System.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (98 lines) | stat: -rw-r--r-- 4,838 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
<html lang="en">
<head>
<title>Defining the ODE System - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Ordinary-Differential-Equations.html" title="Ordinary Differential Equations">
<link rel="next" href="Stepping-Functions.html" title="Stepping Functions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Defining-the-ODE-System"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Stepping-Functions.html">Stepping Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Ordinary-Differential-Equations.html">Ordinary Differential Equations</a>
<hr>
</div>

<h3 class="section">25.1 Defining the ODE System</h3>

<p>The routines solve the general n-dimensional first-order system,

<pre class="example">     dy_i(t)/dt = f_i(t, y_1(t), ..., y_n(t))
</pre>
   <p class="noindent">for i = 1, \dots, n.  The stepping functions rely on the vector
of derivatives f_i and the Jacobian matrix,
<!-- {$J_{ij} = \partial f_i(t, y(t)) / \partial y_j$} -->
J_{ij} = df_i(t,y(t)) / dy_j. 
A system of equations is defined using the <code>gsl_odeiv_system</code>
datatype.

<div class="defun">
&mdash; Data Type: <b>gsl_odeiv_system</b><var><a name="index-gsl_005fodeiv_005fsystem-2032"></a></var><br>
<blockquote><p>This data type defines a general ODE system with arbitrary parameters.

          <dl>
<dt><code>int (* function) (double t, const double y[], double dydt[], void * params)</code><dd>This function should store the vector elements
<!-- {$f_i(t,y,\hbox{\it params})$} -->
f_i(t,y,params) in the array <var>dydt</var>,
for arguments (<var>t</var>,<var>y</var>) and parameters <var>params</var>. 
The function should return <code>GSL_SUCCESS</code> if the calculation
was completed successfully. Any other return value indicates
an error.

          <br><dt><code>int (* jacobian) (double t, const double y[], double * dfdy, double dfdt[], void * params);</code><dd>This function should store the vector of derivative elements
<!-- {$\partial f_i(t,y,params) / \partial t$} -->
df_i(t,y,params)/dt in the array <var>dfdt</var> and the
Jacobian matrix <!-- {$J_{ij}$} -->
J_{ij} in the array
<var>dfdy</var>, regarded as a row-ordered matrix <code>J(i,j) = dfdy[i * dimension + j]</code>
where <code>dimension</code> is the dimension of the system. 
The function should return <code>GSL_SUCCESS</code> if the calculation
was completed successfully.  Any other return value indicates
an error.

          <p>Some of the simpler solver algorithms do not make use of the Jacobian
matrix, so it is not always strictly necessary to provide it (the
<code>jacobian</code> element of the struct can be replaced by a null pointer
for those algorithms).  However, it is useful to provide the Jacobian to allow
the solver algorithms to be interchanged&mdash;the best algorithms make use
of the Jacobian.

          <br><dt><code>size_t dimension;</code><dd>This is the dimension of the system of equations.

          <br><dt><code>void * params</code><dd>This is a pointer to the arbitrary parameters of the system. 
</dl>
        </p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>