1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
<html lang="en">
<head>
<title>Definition of Legendre Forms - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Elliptic-Integrals.html" title="Elliptic Integrals">
<link rel="next" href="Definition-of-Carlson-Forms.html" title="Definition of Carlson Forms">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Definition-of-Legendre-Forms"></a>
Next: <a rel="next" accesskey="n" href="Definition-of-Carlson-Forms.html">Definition of Carlson Forms</a>,
Up: <a rel="up" accesskey="u" href="Elliptic-Integrals.html">Elliptic Integrals</a>
<hr>
</div>
<h4 class="subsection">7.13.1 Definition of Legendre Forms</h4>
<p><a name="index-Legendre-forms-of-elliptic-integrals-442"></a>The Legendre forms of elliptic integrals F(\phi,k),
E(\phi,k) and \Pi(\phi,k,n) are defined by,
<pre class="example"> F(\phi,k) = \int_0^\phi dt 1/\sqrt((1 - k^2 \sin^2(t)))
E(\phi,k) = \int_0^\phi dt \sqrt((1 - k^2 \sin^2(t)))
Pi(\phi,k,n) = \int_0^\phi dt 1/((1 + n \sin^2(t))\sqrt(1 - k^2 \sin^2(t)))
</pre>
<p class="noindent">The complete Legendre forms are denoted by K(k) = F(\pi/2, k) and
E(k) = E(\pi/2, k).
<p>The notation used here is based on Carlson, <cite>Numerische
Mathematik</cite> 33 (1979) 1 and differs slightly from that used by
Abramowitz & Stegun, where the functions are given in terms of the
parameter m = k^2 and n is replaced by -n.
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|