1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
<html lang="en">
<head>
<title>Eigenvalue and Eigenvector Examples - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Eigensystems.html" title="Eigensystems">
<link rel="prev" href="Sorting-Eigenvalues-and-Eigenvectors.html" title="Sorting Eigenvalues and Eigenvectors">
<link rel="next" href="Eigenvalue-and-Eigenvector-References.html" title="Eigenvalue and Eigenvector References">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Eigenvalue-and-Eigenvector-Examples"></a>
Next: <a rel="next" accesskey="n" href="Eigenvalue-and-Eigenvector-References.html">Eigenvalue and Eigenvector References</a>,
Previous: <a rel="previous" accesskey="p" href="Sorting-Eigenvalues-and-Eigenvectors.html">Sorting Eigenvalues and Eigenvectors</a>,
Up: <a rel="up" accesskey="u" href="Eigensystems.html">Eigensystems</a>
<hr>
</div>
<h3 class="section">14.8 Examples</h3>
<p>The following program computes the eigenvalues and eigenvectors of the 4-th order Hilbert matrix, H(i,j) = 1/(i + j + 1).
<pre class="example"><pre class="verbatim"> #include <stdio.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>
int
main (void)
{
double data[] = { 1.0 , 1/2.0, 1/3.0, 1/4.0,
1/2.0, 1/3.0, 1/4.0, 1/5.0,
1/3.0, 1/4.0, 1/5.0, 1/6.0,
1/4.0, 1/5.0, 1/6.0, 1/7.0 };
gsl_matrix_view m
= gsl_matrix_view_array (data, 4, 4);
gsl_vector *eval = gsl_vector_alloc (4);
gsl_matrix *evec = gsl_matrix_alloc (4, 4);
gsl_eigen_symmv_workspace * w =
gsl_eigen_symmv_alloc (4);
gsl_eigen_symmv (&m.matrix, eval, evec, w);
gsl_eigen_symmv_free (w);
gsl_eigen_symmv_sort (eval, evec,
GSL_EIGEN_SORT_ABS_ASC);
{
int i;
for (i = 0; i < 4; i++)
{
double eval_i
= gsl_vector_get (eval, i);
gsl_vector_view evec_i
= gsl_matrix_column (evec, i);
printf ("eigenvalue = %g\n", eval_i);
printf ("eigenvector = \n");
gsl_vector_fprintf (stdout,
&evec_i.vector, "%g");
}
}
gsl_vector_free (eval);
gsl_matrix_free (evec);
return 0;
}
</pre></pre>
<p class="noindent">Here is the beginning of the output from the program,
<pre class="example"> $ ./a.out
eigenvalue = 9.67023e-05
eigenvector =
-0.0291933
0.328712
-0.791411
0.514553
...
</pre>
<p class="noindent">This can be compared with the corresponding output from <span class="sc">gnu octave</span>,
<pre class="example"> octave> [v,d] = eig(hilb(4));
octave> diag(d)
ans =
9.6702e-05
6.7383e-03
1.6914e-01
1.5002e+00
octave> v
v =
0.029193 0.179186 -0.582076 0.792608
-0.328712 -0.741918 0.370502 0.451923
0.791411 0.100228 0.509579 0.322416
-0.514553 0.638283 0.514048 0.252161
</pre>
<p class="noindent">Note that the eigenvectors can differ by a change of sign, since the
sign of an eigenvector is arbitrary.
<p>The following program illustrates the use of the nonsymmetric
eigensolver, by computing the eigenvalues and eigenvectors of
the Vandermonde matrix
<!-- {$V(x;i,j) = x_i^{n - j}$} -->
V(x;i,j) = x_i^{n - j}
with x = (-1,-2,3,4).
<pre class="example"><pre class="verbatim"> #include <stdio.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>
int
main (void)
{
double data[] = { -1.0, 1.0, -1.0, 1.0,
-8.0, 4.0, -2.0, 1.0,
27.0, 9.0, 3.0, 1.0,
64.0, 16.0, 4.0, 1.0 };
gsl_matrix_view m
= gsl_matrix_view_array (data, 4, 4);
gsl_vector_complex *eval = gsl_vector_complex_alloc (4);
gsl_matrix_complex *evec = gsl_matrix_complex_alloc (4, 4);
gsl_eigen_nonsymmv_workspace * w =
gsl_eigen_nonsymmv_alloc (4);
gsl_eigen_nonsymmv (&m.matrix, eval, evec, w);
gsl_eigen_nonsymmv_free (w);
gsl_eigen_nonsymmv_sort (eval, evec,
GSL_EIGEN_SORT_ABS_DESC);
{
int i, j;
for (i = 0; i < 4; i++)
{
gsl_complex eval_i
= gsl_vector_complex_get (eval, i);
gsl_vector_complex_view evec_i
= gsl_matrix_complex_column (evec, i);
printf ("eigenvalue = %g + %gi\n",
GSL_REAL(eval_i), GSL_IMAG(eval_i));
printf ("eigenvector = \n");
for (j = 0; j < 4; ++j)
{
gsl_complex z = gsl_vector_complex_get(&evec_i.vector, j);
printf("%g + %gi\n", GSL_REAL(z), GSL_IMAG(z));
}
}
}
gsl_vector_complex_free(eval);
gsl_matrix_complex_free(evec);
return 0;
}
</pre></pre>
<p class="noindent">Here is the beginning of the output from the program,
<pre class="example"> $ ./a.out
eigenvalue = -6.41391 + 0i
eigenvector =
-0.0998822 + 0i
-0.111251 + 0i
0.292501 + 0i
0.944505 + 0i
eigenvalue = 5.54555 + 3.08545i
eigenvector =
-0.043487 + -0.0076308i
0.0642377 + -0.142127i
-0.515253 + 0.0405118i
-0.840592 + -0.00148565i
...
</pre>
<p class="noindent">This can be compared with the corresponding output from <span class="sc">gnu octave</span>,
<pre class="example"> octave> [v,d] = eig(vander([-1 -2 3 4]));
octave> diag(d)
ans =
-6.4139 + 0.0000i
5.5456 + 3.0854i
5.5456 - 3.0854i
2.3228 + 0.0000i
octave> v
v =
Columns 1 through 3:
-0.09988 + 0.00000i -0.04350 - 0.00755i -0.04350 + 0.00755i
-0.11125 + 0.00000i 0.06399 - 0.14224i 0.06399 + 0.14224i
0.29250 + 0.00000i -0.51518 + 0.04142i -0.51518 - 0.04142i
0.94451 + 0.00000i -0.84059 + 0.00000i -0.84059 - 0.00000i
Column 4:
-0.14493 + 0.00000i
0.35660 + 0.00000i
0.91937 + 0.00000i
0.08118 + 0.00000i
</pre>
<p>Note that the eigenvectors corresponding to the eigenvalue
5.54555 + 3.08545i are slightly different. This is because
they differ by the multiplicative constant
0.9999984 + 0.0017674i which has magnitude 1.
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|