File: Elementary-Functions.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (122 lines) | stat: -rw-r--r-- 7,136 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
<html lang="en">
<head>
<title>Elementary Functions - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Mathematical-Functions.html" title="Mathematical Functions">
<link rel="prev" href="Infinities-and-Not_002da_002dnumber.html" title="Infinities and Not-a-number">
<link rel="next" href="Small-integer-powers.html" title="Small integer powers">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Elementary-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Small-integer-powers.html">Small integer powers</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Infinities-and-Not_002da_002dnumber.html">Infinities and Not-a-number</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Mathematical-Functions.html">Mathematical Functions</a>
<hr>
</div>

<h3 class="section">4.3 Elementary Functions</h3>

<p>The following routines provide portable implementations of functions
found in the BSD math library.  When native versions are not available
the functions described here can be used instead.  The substitution can
be made automatically if you use <code>autoconf</code> to compile your
application (see <a href="Portability-functions.html">Portability functions</a>).

<div class="defun">
&mdash; Function: double <b>gsl_log1p</b> (<var>const double x</var>)<var><a name="index-gsl_005flog1p-81"></a></var><br>
<blockquote><p><a name="index-log1p-82"></a><a name="index-logarithm_002c-computed-accurately-near-1-83"></a>This function computes the value of \log(1+x) in a way that is
accurate for small <var>x</var>. It provides an alternative to the BSD math
function <code>log1p(x)</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_expm1</b> (<var>const double x</var>)<var><a name="index-gsl_005fexpm1-84"></a></var><br>
<blockquote><p><a name="index-expm1-85"></a><a name="index-exponential_002c-difference-from-1-computed-accurately-86"></a>This function computes the value of \exp(x)-1 in a way that is
accurate for small <var>x</var>. It provides an alternative to the BSD math
function <code>expm1(x)</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_hypot</b> (<var>const double x, const double y</var>)<var><a name="index-gsl_005fhypot-87"></a></var><br>
<blockquote><p><a name="index-hypot-88"></a><a name="index-euclidean-distance-function_002c-hypot-89"></a><a name="index-length_002c-computed-accurately-using-hypot-90"></a>This function computes the value of
<!-- {$\sqrt{x^2 + y^2}$} -->
\sqrt{x^2 + y^2} in a way that avoids overflow. It provides an
alternative to the BSD math function <code>hypot(x,y)</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_hypot3</b> (<var>const double x, const double y, const double z</var>)<var><a name="index-gsl_005fhypot3-91"></a></var><br>
<blockquote><p><a name="index-euclidean-distance-function_002c-hypot-92"></a><a name="index-length_002c-computed-accurately-using-hypot-93"></a>This function computes the value of
<!-- {$\sqrt{x^2 + y^2 + z^2}$} -->
\sqrt{x^2 + y^2 + z^2} in a way that avoids overflow. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_acosh</b> (<var>const double x</var>)<var><a name="index-gsl_005facosh-94"></a></var><br>
<blockquote><p><a name="index-acosh-95"></a><a name="index-hyperbolic-cosine_002c-inverse-96"></a><a name="index-inverse-hyperbolic-cosine-97"></a>This function computes the value of \arccosh(x). It provides an
alternative to the standard math function <code>acosh(x)</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_asinh</b> (<var>const double x</var>)<var><a name="index-gsl_005fasinh-98"></a></var><br>
<blockquote><p><a name="index-asinh-99"></a><a name="index-hyperbolic-sine_002c-inverse-100"></a><a name="index-inverse-hyperbolic-sine-101"></a>This function computes the value of \arcsinh(x). It provides an
alternative to the standard math function <code>asinh(x)</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_atanh</b> (<var>const double x</var>)<var><a name="index-gsl_005fatanh-102"></a></var><br>
<blockquote><p><a name="index-atanh-103"></a><a name="index-hyperbolic-tangent_002c-inverse-104"></a><a name="index-inverse-hyperbolic-tangent-105"></a>This function computes the value of \arctanh(x). It provides an
alternative to the standard math function <code>atanh(x)</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_ldexp</b> (<var>double x, int e</var>)<var><a name="index-gsl_005fldexp-106"></a></var><br>
<blockquote><p><a name="index-ldexp-107"></a>This function computes the value of x * 2^e. It provides an
alternative to the standard math function <code>ldexp(x,e)</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_frexp</b> (<var>double x, int * e</var>)<var><a name="index-gsl_005ffrexp-108"></a></var><br>
<blockquote><p><a name="index-frexp-109"></a>This function splits the number x into its normalized fraction
f and exponent e, such that x = f * 2^e and
<!-- {$0.5 \le f < 1$} -->
0.5 &lt;= f &lt; 1. The function returns f and stores the
exponent in e. If x is zero, both f and e
are set to zero. This function provides an alternative to the standard
math function <code>frexp(x, e)</code>. 
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>