File: Example-of-accelerating-a-series.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (128 lines) | stat: -rw-r--r-- 5,189 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
<html lang="en">
<head>
<title>Example of accelerating a series - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Series-Acceleration.html" title="Series Acceleration">
<link rel="prev" href="Acceleration-functions-without-error-estimation.html" title="Acceleration functions without error estimation">
<link rel="next" href="Series-Acceleration-References.html" title="Series Acceleration References">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Example-of-accelerating-a-series"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Series-Acceleration-References.html">Series Acceleration References</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Acceleration-functions-without-error-estimation.html">Acceleration functions without error estimation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Series-Acceleration.html">Series Acceleration</a>
<hr>
</div>

<h3 class="section">29.3 Examples</h3>

<p>The following code calculates an estimate of \zeta(2) = \pi^2 / 6
using the series,

<pre class="example">     \zeta(2) = 1 + 1/2^2 + 1/3^2 + 1/4^2 + ...
</pre>
   <p class="noindent">After <var>N</var> terms the error in the sum is O(1/N), making direct
summation of the series converge slowly.

<pre class="example"><pre class="verbatim">     #include &lt;stdio.h>
     #include &lt;gsl/gsl_math.h>
     #include &lt;gsl/gsl_sum.h>
     
     #define N 20
     
     int
     main (void)
     {
       double t[N];
       double sum_accel, err;
       double sum = 0;
       int n;
       
       gsl_sum_levin_u_workspace * w 
         = gsl_sum_levin_u_alloc (N);
     
       const double zeta_2 = M_PI * M_PI / 6.0;
       
       /* terms for zeta(2) = \sum_{n=1}^{\infty} 1/n^2 */
     
       for (n = 0; n &lt; N; n++)
         {
           double np1 = n + 1.0;
           t[n] = 1.0 / (np1 * np1);
           sum += t[n];
         }
       
       gsl_sum_levin_u_accel (t, N, w, &amp;sum_accel, &amp;err);
     
       printf ("term-by-term sum = % .16f using %d terms\n", 
               sum, N);
     
       printf ("term-by-term sum = % .16f using %d terms\n", 
               w->sum_plain, w->terms_used);
     
       printf ("exact value      = % .16f\n", zeta_2);
       printf ("accelerated sum  = % .16f using %d terms\n", 
               sum_accel, w->terms_used);
     
       printf ("estimated error  = % .16f\n", err);
       printf ("actual error     = % .16f\n", 
               sum_accel - zeta_2);
     
       gsl_sum_levin_u_free (w);
       return 0;
     }
</pre></pre>
   <p class="noindent">The output below shows that the Levin u-transform is able to obtain an
estimate of the sum to 1 part in
<!-- {$10^{10}$} -->
10^10 using the first eleven terms of the series.  The
error estimate returned by the function is also accurate, giving
the correct number of significant digits.

<pre class="example">     $ ./a.out
<pre class="verbatim">     term-by-term sum =  1.5961632439130233 using 20 terms
     term-by-term sum =  1.5759958390005426 using 13 terms
     exact value      =  1.6449340668482264
     accelerated sum  =  1.6449340668166479 using 13 terms
     estimated error  =  0.0000000000508580
     actual error     = -0.0000000000315785
</pre></pre>
   <p class="noindent">Note that a direct summation of this series would require
<!-- {$10^{10}$} -->
10^10 terms to achieve the same precision as the accelerated
sum does in 13 terms.

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>