File: Factorials.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (125 lines) | stat: -rw-r--r-- 7,228 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
<html lang="en">
<head>
<title>Factorials - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Gamma-and-Beta-Functions.html" title="Gamma and Beta Functions">
<link rel="prev" href="Gamma-Functions.html" title="Gamma Functions">
<link rel="next" href="Pochhammer-Symbol.html" title="Pochhammer Symbol">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Factorials"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Pochhammer-Symbol.html">Pochhammer Symbol</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Gamma-Functions.html">Gamma Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Gamma-and-Beta-Functions.html">Gamma and Beta Functions</a>
<hr>
</div>

<h4 class="subsection">7.19.2 Factorials</h4>

<p><a name="index-factorial-574"></a>
Although factorials can be computed from the Gamma function, using
the relation n! = \Gamma(n+1) for non-negative integer n,
it is usually more efficient to call the functions in this section,
particularly for small values of n, whose factorial values are
maintained in hardcoded tables.

<div class="defun">
&mdash; Function: double <b>gsl_sf_fact</b> (<var>unsigned int n</var>)<var><a name="index-gsl_005fsf_005ffact-575"></a></var><br>
&mdash; Function: int <b>gsl_sf_fact_e</b> (<var>unsigned int n, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffact_005fe-576"></a></var><br>
<blockquote><p><a name="index-factorial-577"></a>These routines compute the factorial n!.  The factorial is
related to the Gamma function by n! = \Gamma(n+1). 
The maximum value of n such that n! is not
considered an overflow is given by the macro <code>GSL_SF_FACT_NMAX</code>
and is 170. 
<!-- exceptions: GSL_EDOM, GSL_OVRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_doublefact</b> (<var>unsigned int n</var>)<var><a name="index-gsl_005fsf_005fdoublefact-578"></a></var><br>
&mdash; Function: int <b>gsl_sf_doublefact_e</b> (<var>unsigned int n, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fdoublefact_005fe-579"></a></var><br>
<blockquote><p><a name="index-double-factorial-580"></a>These routines compute the double factorial n!! = n(n-2)(n-4) \dots. 
The maximum value of n such that n!! is not
considered an overflow is given by the macro <code>GSL_SF_DOUBLEFACT_NMAX</code>
and is 297. 
<!-- exceptions: GSL_EDOM, GSL_OVRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_lnfact</b> (<var>unsigned int n</var>)<var><a name="index-gsl_005fsf_005flnfact-581"></a></var><br>
&mdash; Function: int <b>gsl_sf_lnfact_e</b> (<var>unsigned int n, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flnfact_005fe-582"></a></var><br>
<blockquote><p><a name="index-logarithm-of-factorial-583"></a>These routines compute the logarithm of the factorial of <var>n</var>,
\log(n!).  The algorithm is faster than computing
\ln(\Gamma(n+1)) via <code>gsl_sf_lngamma</code> for n &lt; 170,
but defers for larger <var>n</var>. 
<!-- exceptions: none -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_lndoublefact</b> (<var>unsigned int n</var>)<var><a name="index-gsl_005fsf_005flndoublefact-584"></a></var><br>
&mdash; Function: int <b>gsl_sf_lndoublefact_e</b> (<var>unsigned int n, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flndoublefact_005fe-585"></a></var><br>
<blockquote><p><a name="index-logarithm-of-double-factorial-586"></a>These routines compute the logarithm of the double factorial of <var>n</var>,
\log(n!!). 
<!-- exceptions: none -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_choose</b> (<var>unsigned int n, unsigned int m</var>)<var><a name="index-gsl_005fsf_005fchoose-587"></a></var><br>
&mdash; Function: int <b>gsl_sf_choose_e</b> (<var>unsigned int n, unsigned int m, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fchoose_005fe-588"></a></var><br>
<blockquote><p><a name="index-combinatorial-factor-C_0028m_002cn_0029-589"></a>These routines compute the combinatorial factor <code>n choose m</code>
= n!/(m!(n-m)!) 
<!-- exceptions: GSL_EDOM, GSL_EOVRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_lnchoose</b> (<var>unsigned int n, unsigned int m</var>)<var><a name="index-gsl_005fsf_005flnchoose-590"></a></var><br>
&mdash; Function: int <b>gsl_sf_lnchoose_e</b> (<var>unsigned int n, unsigned int m, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flnchoose_005fe-591"></a></var><br>
<blockquote><p><a name="index-logarithm-of-combinatorial-factor-C_0028m_002cn_0029-592"></a>These routines compute the logarithm of <code>n choose m</code>.  This is
equivalent to the sum \log(n!) - \log(m!) - \log((n-m)!). 
<!-- exceptions: GSL_EDOM -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_taylorcoeff</b> (<var>int n, double x</var>)<var><a name="index-gsl_005fsf_005ftaylorcoeff-593"></a></var><br>
&mdash; Function: int <b>gsl_sf_taylorcoeff_e</b> (<var>int n, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ftaylorcoeff_005fe-594"></a></var><br>
<blockquote><p><a name="index-Taylor-coefficients_002c-computation-of-595"></a>These routines compute the Taylor coefficient x^n / n! for
<!-- {$x \ge 0$} -->
x &gt;= 0,
<!-- {$n \ge 0$} -->
n &gt;= 0. 
<!-- exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW -->
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>