1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
<html lang="en">
<head>
<title>Factorials - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Gamma-and-Beta-Functions.html" title="Gamma and Beta Functions">
<link rel="prev" href="Gamma-Functions.html" title="Gamma Functions">
<link rel="next" href="Pochhammer-Symbol.html" title="Pochhammer Symbol">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Factorials"></a>
Next: <a rel="next" accesskey="n" href="Pochhammer-Symbol.html">Pochhammer Symbol</a>,
Previous: <a rel="previous" accesskey="p" href="Gamma-Functions.html">Gamma Functions</a>,
Up: <a rel="up" accesskey="u" href="Gamma-and-Beta-Functions.html">Gamma and Beta Functions</a>
<hr>
</div>
<h4 class="subsection">7.19.2 Factorials</h4>
<p><a name="index-factorial-574"></a>
Although factorials can be computed from the Gamma function, using
the relation n! = \Gamma(n+1) for non-negative integer n,
it is usually more efficient to call the functions in this section,
particularly for small values of n, whose factorial values are
maintained in hardcoded tables.
<div class="defun">
— Function: double <b>gsl_sf_fact</b> (<var>unsigned int n</var>)<var><a name="index-gsl_005fsf_005ffact-575"></a></var><br>
— Function: int <b>gsl_sf_fact_e</b> (<var>unsigned int n, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffact_005fe-576"></a></var><br>
<blockquote><p><a name="index-factorial-577"></a>These routines compute the factorial n!. The factorial is
related to the Gamma function by n! = \Gamma(n+1).
The maximum value of n such that n! is not
considered an overflow is given by the macro <code>GSL_SF_FACT_NMAX</code>
and is 170.
<!-- exceptions: GSL_EDOM, GSL_OVRFLW -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_doublefact</b> (<var>unsigned int n</var>)<var><a name="index-gsl_005fsf_005fdoublefact-578"></a></var><br>
— Function: int <b>gsl_sf_doublefact_e</b> (<var>unsigned int n, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fdoublefact_005fe-579"></a></var><br>
<blockquote><p><a name="index-double-factorial-580"></a>These routines compute the double factorial n!! = n(n-2)(n-4) \dots.
The maximum value of n such that n!! is not
considered an overflow is given by the macro <code>GSL_SF_DOUBLEFACT_NMAX</code>
and is 297.
<!-- exceptions: GSL_EDOM, GSL_OVRFLW -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_lnfact</b> (<var>unsigned int n</var>)<var><a name="index-gsl_005fsf_005flnfact-581"></a></var><br>
— Function: int <b>gsl_sf_lnfact_e</b> (<var>unsigned int n, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flnfact_005fe-582"></a></var><br>
<blockquote><p><a name="index-logarithm-of-factorial-583"></a>These routines compute the logarithm of the factorial of <var>n</var>,
\log(n!). The algorithm is faster than computing
\ln(\Gamma(n+1)) via <code>gsl_sf_lngamma</code> for n < 170,
but defers for larger <var>n</var>.
<!-- exceptions: none -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_lndoublefact</b> (<var>unsigned int n</var>)<var><a name="index-gsl_005fsf_005flndoublefact-584"></a></var><br>
— Function: int <b>gsl_sf_lndoublefact_e</b> (<var>unsigned int n, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flndoublefact_005fe-585"></a></var><br>
<blockquote><p><a name="index-logarithm-of-double-factorial-586"></a>These routines compute the logarithm of the double factorial of <var>n</var>,
\log(n!!).
<!-- exceptions: none -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_choose</b> (<var>unsigned int n, unsigned int m</var>)<var><a name="index-gsl_005fsf_005fchoose-587"></a></var><br>
— Function: int <b>gsl_sf_choose_e</b> (<var>unsigned int n, unsigned int m, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fchoose_005fe-588"></a></var><br>
<blockquote><p><a name="index-combinatorial-factor-C_0028m_002cn_0029-589"></a>These routines compute the combinatorial factor <code>n choose m</code>
= n!/(m!(n-m)!)
<!-- exceptions: GSL_EDOM, GSL_EOVRFLW -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_lnchoose</b> (<var>unsigned int n, unsigned int m</var>)<var><a name="index-gsl_005fsf_005flnchoose-590"></a></var><br>
— Function: int <b>gsl_sf_lnchoose_e</b> (<var>unsigned int n, unsigned int m, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flnchoose_005fe-591"></a></var><br>
<blockquote><p><a name="index-logarithm-of-combinatorial-factor-C_0028m_002cn_0029-592"></a>These routines compute the logarithm of <code>n choose m</code>. This is
equivalent to the sum \log(n!) - \log(m!) - \log((n-m)!).
<!-- exceptions: GSL_EDOM -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_taylorcoeff</b> (<var>int n, double x</var>)<var><a name="index-gsl_005fsf_005ftaylorcoeff-593"></a></var><br>
— Function: int <b>gsl_sf_taylorcoeff_e</b> (<var>int n, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ftaylorcoeff_005fe-594"></a></var><br>
<blockquote><p><a name="index-Taylor-coefficients_002c-computation-of-595"></a>These routines compute the Taylor coefficient x^n / n! for
<!-- {$x \ge 0$} -->
x >= 0,
<!-- {$n \ge 0$} -->
n >= 0.
<!-- exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW -->
</p></blockquote></div>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|