File: Hessenberg_002dTriangular-Decomposition-of-Real-Matrices.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (74 lines) | stat: -rw-r--r-- 3,883 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
<html lang="en">
<head>
<title>Hessenberg-Triangular Decomposition of Real Matrices - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Linear-Algebra.html" title="Linear Algebra">
<link rel="prev" href="Hessenberg-Decomposition-of-Real-Matrices.html" title="Hessenberg Decomposition of Real Matrices">
<link rel="next" href="Bidiagonalization.html" title="Bidiagonalization">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Hessenberg-Triangular-Decomposition-of-Real-Matrices"></a>
<a name="Hessenberg_002dTriangular-Decomposition-of-Real-Matrices"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Bidiagonalization.html">Bidiagonalization</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Hessenberg-Decomposition-of-Real-Matrices.html">Hessenberg Decomposition of Real Matrices</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Linear-Algebra.html">Linear Algebra</a>
<hr>
</div>

<h3 class="section">13.9 Hessenberg-Triangular Decomposition of Real Matrices</h3>

<p><a name="index-hessenberg-triangular-decomposition-1301"></a>
A general real matrix pair (A, B) can be decomposed by
orthogonal similarity transformations into the form

<pre class="example">     A = U H V^T
     B = U R V^T
</pre>
   <p>where U and V are orthogonal, H is an upper
Hessenberg matrix, and R is upper triangular. The
Hessenberg-Triangular reduction is the first step in the generalized
Schur decomposition for the generalized eigenvalue problem.

<div class="defun">
&mdash; Function: int <b>gsl_linalg_hesstri_decomp</b> (<var>gsl_matrix * A, gsl_matrix * B, gsl_matrix * U, gsl_matrix * V, gsl_vector * work</var>)<var><a name="index-gsl_005flinalg_005fhesstri_005fdecomp-1302"></a></var><br>
<blockquote><p>This function computes the Hessenberg-Triangular decomposition of the
matrix pair (<var>A</var>, <var>B</var>). On output, H is stored in <var>A</var>,
and R is stored in <var>B</var>. If <var>U</var> and <var>V</var> are provided
(they may be null), the similarity transformations are stored in them. 
Additional workspace of length N is needed in <var>work</var>. 
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>