File: Householder-Transformations.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (102 lines) | stat: -rw-r--r-- 6,249 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
<html lang="en">
<head>
<title>Householder Transformations - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Linear-Algebra.html" title="Linear Algebra">
<link rel="prev" href="Bidiagonalization.html" title="Bidiagonalization">
<link rel="next" href="Householder-solver-for-linear-systems.html" title="Householder solver for linear systems">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Householder-Transformations"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Householder-solver-for-linear-systems.html">Householder solver for linear systems</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Bidiagonalization.html">Bidiagonalization</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Linear-Algebra.html">Linear Algebra</a>
<hr>
</div>

<h3 class="section">13.11 Householder Transformations</h3>

<p><a name="index-Householder-matrix-1308"></a><a name="index-Householder-transformation-1309"></a><a name="index-transformation_002c-Householder-1310"></a>
A Householder transformation is a rank-1 modification of the identity
matrix which can be used to zero out selected elements of a vector.  A
Householder matrix P takes the form,

<pre class="example">     P = I - \tau v v^T
</pre>
   <p class="noindent">where v is a vector (called the <dfn>Householder vector</dfn>) and
\tau = 2/(v^T v).  The functions described in this section use the
rank-1 structure of the Householder matrix to create and apply
Householder transformations efficiently.

<div class="defun">
&mdash; Function: double <b>gsl_linalg_householder_transform</b> (<var>gsl_vector * v</var>)<var><a name="index-gsl_005flinalg_005fhouseholder_005ftransform-1311"></a></var><br>
&mdash; Function: gsl_complex <b>gsl_linalg_complex_householder_transform</b> (<var>gsl_vector_complex * v</var>)<var><a name="index-gsl_005flinalg_005fcomplex_005fhouseholder_005ftransform-1312"></a></var><br>
<blockquote><p>This function prepares a Householder transformation P = I - \tau v
v^T which can be used to zero all the elements of the input vector except
the first.  On output the transformation is stored in the vector <var>v</var>
and the scalar \tau is returned. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_linalg_householder_hm</b> (<var>double tau, const gsl_vector * v, gsl_matrix * A</var>)<var><a name="index-gsl_005flinalg_005fhouseholder_005fhm-1313"></a></var><br>
&mdash; Function: int <b>gsl_linalg_complex_householder_hm</b> (<var>gsl_complex tau, const gsl_vector_complex * v, gsl_matrix_complex * A</var>)<var><a name="index-gsl_005flinalg_005fcomplex_005fhouseholder_005fhm-1314"></a></var><br>
<blockquote><p>This function applies the Householder matrix P defined by the
scalar <var>tau</var> and the vector <var>v</var> to the left-hand side of the
matrix <var>A</var>. On output the result P A is stored in <var>A</var>. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_linalg_householder_mh</b> (<var>double tau, const gsl_vector * v, gsl_matrix * A</var>)<var><a name="index-gsl_005flinalg_005fhouseholder_005fmh-1315"></a></var><br>
&mdash; Function: int <b>gsl_linalg_complex_householder_mh</b> (<var>gsl_complex tau, const gsl_vector_complex * v, gsl_matrix_complex * A</var>)<var><a name="index-gsl_005flinalg_005fcomplex_005fhouseholder_005fmh-1316"></a></var><br>
<blockquote><p>This function applies the Householder matrix P defined by the
scalar <var>tau</var> and the vector <var>v</var> to the right-hand side of the
matrix <var>A</var>. On output the result A P is stored in <var>A</var>. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_linalg_householder_hv</b> (<var>double tau, const gsl_vector * v, gsl_vector * w</var>)<var><a name="index-gsl_005flinalg_005fhouseholder_005fhv-1317"></a></var><br>
&mdash; Function: int <b>gsl_linalg_complex_householder_hv</b> (<var>gsl_complex tau, const gsl_vector_complex * v, gsl_vector_complex * w</var>)<var><a name="index-gsl_005flinalg_005fcomplex_005fhouseholder_005fhv-1318"></a></var><br>
<blockquote><p>This function applies the Householder transformation P defined by
the scalar <var>tau</var> and the vector <var>v</var> to the vector <var>w</var>.  On
output the result P w is stored in <var>w</var>. 
</p></blockquote></div>

<!-- @deftypefun int gsl_linalg_householder_hm1 (double tau, gsl_matrix * A) -->
<!-- This function applies the Householder transform, defined by the scalar -->
<!-- @var{tau} and the vector @var{v}, to a matrix being build up from the -->
<!-- identity matrix, using the first column of @var{A} as a householder vector. -->
<!-- @end deftypefun -->
</body></html>