File: Legendre-Polynomials.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (116 lines) | stat: -rw-r--r-- 6,712 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
<html lang="en">
<head>
<title>Legendre Polynomials - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Legendre-Functions-and-Spherical-Harmonics.html" title="Legendre Functions and Spherical Harmonics">
<link rel="next" href="Associated-Legendre-Polynomials-and-Spherical-Harmonics.html" title="Associated Legendre Polynomials and Spherical Harmonics">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Legendre-Polynomials"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Associated-Legendre-Polynomials-and-Spherical-Harmonics.html">Associated Legendre Polynomials and Spherical Harmonics</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Legendre-Functions-and-Spherical-Harmonics.html">Legendre Functions and Spherical Harmonics</a>
<hr>
</div>

<h4 class="subsection">7.24.1 Legendre Polynomials</h4>

<div class="defun">
&mdash; Function: double <b>gsl_sf_legendre_P1</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005flegendre_005fP1-682"></a></var><br>
&mdash; Function: double <b>gsl_sf_legendre_P2</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005flegendre_005fP2-683"></a></var><br>
&mdash; Function: double <b>gsl_sf_legendre_P3</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005flegendre_005fP3-684"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_P1_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flegendre_005fP1_005fe-685"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_P2_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flegendre_005fP2_005fe-686"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_P3_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flegendre_005fP3_005fe-687"></a></var><br>
<blockquote><p>These functions evaluate the Legendre polynomials
<!-- {$P_l(x)$} -->
P_l(x) using explicit
representations for l=1, 2, 3. 
<!-- Exceptional Return Values: none -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_legendre_Pl</b> (<var>int l, double x</var>)<var><a name="index-gsl_005fsf_005flegendre_005fPl-688"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_Pl_e</b> (<var>int l, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flegendre_005fPl_005fe-689"></a></var><br>
<blockquote><p>These functions evaluate the Legendre polynomial <!-- {$P_l(x)$} -->
P_l(x) for a specific value of <var>l</var>,
<var>x</var> subject to <!-- {$l \ge 0$} -->
l &gt;= 0,
<!-- {$|x| \le 1$} -->
|x| &lt;= 1
<!-- Exceptional Return Values: GSL_EDOM -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_sf_legendre_Pl_array</b> (<var>int lmax, double x, double result_array</var>[])<var><a name="index-gsl_005fsf_005flegendre_005fPl_005farray-690"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_Pl_deriv_array</b> (<var>int lmax, double x, double result_array</var>[]<var>, double result_deriv_array</var>[])<var><a name="index-gsl_005fsf_005flegendre_005fPl_005fderiv_005farray-691"></a></var><br>
<blockquote>
<p>These functions compute an array of Legendre polynomials
P_l(x), and optionally their derivatives dP_l(x)/dx,
for l = 0, \dots, lmax,
<!-- {$|x| \le 1$} -->
|x| &lt;= 1
<!-- Exceptional Return Values: GSL_EDOM -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_legendre_Q0</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005flegendre_005fQ0-692"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_Q0_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flegendre_005fQ0_005fe-693"></a></var><br>
<blockquote><p>These routines compute the Legendre function Q_0(x) for x &gt;
-1, <!-- {$x \ne 1$} -->
x != 1. 
<!-- Exceptional Return Values: GSL_EDOM -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_legendre_Q1</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005flegendre_005fQ1-694"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_Q1_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flegendre_005fQ1_005fe-695"></a></var><br>
<blockquote><p>These routines compute the Legendre function Q_1(x) for x &gt;
-1, <!-- {$x \ne 1$} -->
x != 1. 
<!-- Exceptional Return Values: GSL_EDOM -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_legendre_Ql</b> (<var>int l, double x</var>)<var><a name="index-gsl_005fsf_005flegendre_005fQl-696"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_Ql_e</b> (<var>int l, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flegendre_005fQl_005fe-697"></a></var><br>
<blockquote><p>These routines compute the Legendre function Q_l(x) for x &gt;
-1, <!-- {$x \ne 1$} -->
x != 1 and <!-- {$l \ge 0$} -->
l &gt;= 0. 
<!-- Exceptional Return Values: GSL_EDOM -->
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>