File: Linear-fitting-without-a-constant-term.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (91 lines) | stat: -rw-r--r-- 5,172 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
<html lang="en">
<head>
<title>Linear fitting without a constant term - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Least_002dSquares-Fitting.html" title="Least-Squares Fitting">
<link rel="prev" href="Linear-regression.html" title="Linear regression">
<link rel="next" href="Multi_002dparameter-fitting.html" title="Multi-parameter fitting">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Linear-fitting-without-a-constant-term"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Multi_002dparameter-fitting.html">Multi-parameter fitting</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Linear-regression.html">Linear regression</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Least_002dSquares-Fitting.html">Least-Squares Fitting</a>
<hr>
</div>

<h3 class="section">36.3 Linear fitting without a constant term</h3>

<p>The functions described in this section can be used to perform
least-squares fits to a straight line model without a constant term,
Y = c_1 X.

<div class="defun">
&mdash; Function: int <b>gsl_fit_mul</b> (<var>const double * x, const size_t xstride, const double * y, const size_t ystride, size_t n, double * c1, double * cov11, double * sumsq</var>)<var><a name="index-gsl_005ffit_005fmul-2378"></a></var><br>
<blockquote><p>This function computes the best-fit linear regression coefficient
<var>c1</var> of the model Y = c_1 X for the datasets (<var>x</var>,
<var>y</var>), two vectors of length <var>n</var> with strides <var>xstride</var> and
<var>ystride</var>.  The errors on <var>y</var> are assumed unknown so the
variance of the parameter <var>c1</var> is estimated from
the scatter of the points around the best-fit line and returned via the
parameter <var>cov11</var>.  The sum of squares of the residuals from the
best-fit line is returned in <var>sumsq</var>. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_fit_wmul</b> (<var>const double * x, const size_t xstride, const double * w, const size_t wstride, const double * y, const size_t ystride, size_t n, double * c1, double * cov11, double * sumsq</var>)<var><a name="index-gsl_005ffit_005fwmul-2379"></a></var><br>
<blockquote><p>This function computes the best-fit linear regression coefficient
<var>c1</var> of the model Y = c_1 X for the weighted datasets
(<var>x</var>, <var>y</var>), two vectors of length <var>n</var> with strides
<var>xstride</var> and <var>ystride</var>.  The vector <var>w</var>, of length <var>n</var>
and stride <var>wstride</var>, specifies the weight of each datapoint. The
weight is the reciprocal of the variance for each datapoint in <var>y</var>.

        <p>The variance of the parameter <var>c1</var> is computed using the weights
and returned via the parameter <var>cov11</var>.  The weighted sum of
squares of the residuals from the best-fit line, \chi^2, is
returned in <var>chisq</var>. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_fit_mul_est</b> (<var>double x, double c1, double cov11, double * y, double * y_err</var>)<var><a name="index-gsl_005ffit_005fmul_005fest-2380"></a></var><br>
<blockquote><p>This function uses the best-fit linear regression coefficient <var>c1</var>
and its covariance <var>cov11</var> to compute the fitted function
<var>y</var> and its standard deviation <var>y_err</var> for the model Y =
c_1 X at the point <var>x</var>. 
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>