1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
<html lang="en">
<head>
<title>Mathieu Functions - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Special-Functions.html" title="Special Functions">
<link rel="prev" href="Logarithm-and-Related-Functions.html" title="Logarithm and Related Functions">
<link rel="next" href="Power-Function.html" title="Power Function">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Mathieu-Functions"></a>
Next: <a rel="next" accesskey="n" href="Power-Function.html">Power Function</a>,
Previous: <a rel="previous" accesskey="p" href="Logarithm-and-Related-Functions.html">Logarithm and Related Functions</a>,
Up: <a rel="up" accesskey="u" href="Special-Functions.html">Special Functions</a>
<hr>
</div>
<h3 class="section">7.26 Mathieu Functions</h3>
<p><a name="index-Mathieu-functions-736"></a>
The routines described in this section compute the angular and radial
Mathieu functions, and their characteristic values. Mathieu
functions are the solutions of the following two differential
equations:
<pre class="example"> d^2y/dv^2 + (a - 2q\cos 2v)y = 0
d^2f/du^2 - (a - 2q\cosh 2u)f = 0
</pre>
<p class="noindent">The angular Mathieu functions ce_r(x,q), se_r(x,q) are
the even and odd periodic solutions of the first equation, which is known as Mathieu's equation. These exist
only for the discrete sequence of characteristic values a=a_r(q)
(even-periodic) and a=b_r(q) (odd-periodic).
<p>The radial Mathieu functions <!-- {$Mc^{(j)}_{r}(z,q)$} -->
Mc^{(j)}_{r}(z,q), <!-- {$Ms^{(j)}_@{r@}(z,q)$} -->
Ms^{(j)}_{r}(z,q) are the solutions of the second equation,
which is referred to as Mathieu's modified equation. The
radial Mathieu functions of the first, second, third and fourth kind
are denoted by the parameter j, which takes the value 1, 2, 3
or 4.
<!-- The angular Mathieu functions can be divided into four types as -->
<!-- @tex -->
<!-- \beforedisplay -->
<!-- $$ -->
<!-- \eqalign{ -->
<!-- x & = \sum_{m=0}^\infty A_{2m+p} \cos(2m+p)\phi, \quad p = 0, 1, \cr -->
<!-- x & = \sum_{m=0}^\infty B_{2m+p} \sin(2m+p)\phi, \quad p = 0, 1. -->
<!-- } -->
<!-- $$ -->
<!-- \afterdisplay -->
<!-- @end tex -->
<!-- @ifinfo -->
<!-- @example -->
<!-- x = \sum_(m=0)^\infty A_(2m+p) \cos(2m+p)\phi, p = 0, 1, -->
<!-- x = \sum_(m=0)^\infty B_(2m+p) \sin(2m+p)\phi, p = 0, 1. -->
<!-- @end example -->
<!-- @end ifinfo -->
<!-- @noindent -->
<!-- The nomenclature used for the angular Mathieu functions is @math{ce_n} -->
<!-- for the first solution and @math{se_n} for the second. -->
<!-- Similar solutions exist for the radial Mathieu functions by replacing -->
<!-- the trigonometric functions with their corresponding hyperbolic -->
<!-- functions as shown below. -->
<!-- @tex -->
<!-- \beforedisplay -->
<!-- $$ -->
<!-- \eqalign{ -->
<!-- x & = \sum_{m=0}^\infty A_{2m+p} \cosh(2m+p)u, \quad p = 0, 1, \cr -->
<!-- x & = \sum_{m=0}^\infty B_{2m+p} \sinh(2m+p)u, \quad p = 0, 1. -->
<!-- } -->
<!-- $$ -->
<!-- \afterdisplay -->
<!-- @end tex -->
<!-- @ifinfo -->
<!-- @example -->
<!-- x = \sum_(m=0)^\infty A_(2m+p) \cosh(2m+p)u, p = 0, 1, -->
<!-- x = \sum_(m=0)^\infty B_(2m+p) \sinh(2m+p)u, p = 0, 1. -->
<!-- @end example -->
<!-- @end ifinfo -->
<!-- @noindent -->
<!-- The nomenclature used for the radial Mathieu functions is @math{Mc_n} -->
<!-- for the first solution and @math{Ms_n} for the second. The hyperbolic -->
<!-- series do not always converge at an acceptable rate. Therefore most -->
<!-- texts on the subject suggest using the following equivalent equations -->
<!-- that are expanded in series of Bessel and Hankel functions. -->
<!-- @tex -->
<!-- \beforedisplay -->
<!-- $$ -->
<!-- \eqalign{ -->
<!-- Mc_{2n}^{(j)}(x,q) & = \sum_{m=0}^\infty (-1)^{r+k} -->
<!-- A_{2m}^{2n}(q)\left[J_m(u_1)Z_m^{(j)}(u_2) + -->
<!-- J_m(u_1)Z_m^{(j)}(u_2)\right]/A_2^{2n} \cr -->
<!-- Mc_{2n+1}^{(j)}(x,q) & = \sum_{m=0}^\infty (-1)^{r+k} -->
<!-- A_{2m+1}^{2n+1}(q)\left[J_m(u_1)Z_{m+1}^{(j)}(u_2) + -->
<!-- J_{m+1}(u_1)Z_m^{(j)}(u_2)\right]/A_1^{2n+1} \cr -->
<!-- Ms_{2n}^{(j)}(x,q) & = \sum_{m=1}^\infty (-1)^{r+k} -->
<!-- B_{2m}^{2n}(q)\left[J_{m-1}(u_1)Z_{m+1}^{(j)}(u_2) + -->
<!-- J_{m+1}(u_1)Z_{m-1}^{(j)}(u_2)\right]/B_2^{2n} \cr -->
<!-- Ms_{2n+1}^{(j)}(x,q) & = \sum_{m=0}^\infty (-1)^{r+k} -->
<!-- B_{2m+1}^{2n+1}(q)\left[J_m(u_1)Z_{m+1}^{(j)}(u_2) + -->
<!-- J_{m+1}(u_1)Z_m^{(j)}(u_2)\right]/B_1^{2n+1} -->
<!-- } -->
<!-- $$ -->
<!-- \afterdisplay -->
<!-- @end tex -->
<!-- @ifinfo -->
<!-- @example -->
<!-- Mc_(2n)^(j)(x,q) = \sum_(m=0)^\infty (-1)^(r+k) A_(2m)^(2n)(q) -->
<!-- [J_m(u_1)Z_m^(j)(u_2) + J_m(u_1)Z_m^(j)(u_2)]/A_2^(2n) -->
<!-- Mc_(2n+1)^(j)(x,q) = \sum_(m=0)^\infty (-1)^(r+k) A_(2m+1)^(2n+1)(q) -->
<!-- [J_m(u_1)Z_(m+1)^(j)(u_2) + J_(m+1)(u_1)Z_m^(j)(u_2)]/A_1^(2n+1) -->
<!-- Ms_(2n)^(j)(x,q) = \sum_(m=1)^\infty (-1)^(r+k) B_(2m)^(2n)(q) -->
<!-- [J_(m-1)(u_1)Z_(m+1)^(j)(u_2) + J_(m+1)(u_1)Z_(m-1)^(j)(u_2)]/B_2^(2n) -->
<!-- Ms_(2n+1)^(j)(x,q) = \sum_(m=0)^\infty (-1)^(r+k) B_(2m+1)^(2n+1)(q) -->
<!-- [J_m(u_1)Z_(m+1)^(j)(u_2) + J_(m+1)(u_1)Z_m^(j)(u_2)]/B_1^(2n+1) -->
<!-- @end example -->
<!-- @end ifinfo -->
<!-- @noindent -->
<!-- where @c{$u_1 = \sqrt{q} \exp(-x)$} -->
<!-- @math{u_1 = \sqrt@{q@} \exp(-x)} and @c{$u_2 = \sqrt@{q@} \exp(x)$} -->
<!-- @math{u_2 = \sqrt@{q@} \exp(x)} and -->
<!-- @tex -->
<!-- \beforedisplay -->
<!-- $$ -->
<!-- \eqalign{ -->
<!-- Z_m^{(1)}(u) & = J_m(u) \cr -->
<!-- Z_m^{(2)}(u) & = Y_m(u) \cr -->
<!-- Z_m^{(3)}(u) & = H_m^{(1)}(u) \cr -->
<!-- Z_m^{(4)}(u) & = H_m^{(2)}(u) -->
<!-- } -->
<!-- $$ -->
<!-- \afterdisplay -->
<!-- @end tex -->
<!-- @ifinfo -->
<!-- @example -->
<!-- Z_m^(1)(u) = J_m(u) -->
<!-- Z_m^(2)(u) = Y_m(u) -->
<!-- Z_m^(3)(u) = H_m^(1)(u) -->
<!-- Z_m^(4)(u) = H_m^(2)(u) -->
<!-- @end example -->
<!-- @end ifinfo -->
<!-- @noindent -->
<!-- where @math{J_m(u)}, @math{Y_m(u)}, @math{H_m^{(1)}(u)}, and -->
<!-- @math{H_m^{(2)}(u)} are the regular and irregular Bessel functions and -->
<!-- the Hankel functions, respectively. -->
<p>For more information on the Mathieu functions, see Abramowitz and
Stegun, Chapter 20. These functions are defined in the header file
<samp><span class="file">gsl_sf_mathieu.h</span></samp>.
<ul class="menu">
<li><a accesskey="1" href="Mathieu-Function-Workspace.html">Mathieu Function Workspace</a>
<li><a accesskey="2" href="Mathieu-Function-Characteristic-Values.html">Mathieu Function Characteristic Values</a>
<li><a accesskey="3" href="Angular-Mathieu-Functions.html">Angular Mathieu Functions</a>
<li><a accesskey="4" href="Radial-Mathieu-Functions.html">Radial Mathieu Functions</a>
</ul>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|