File: Mean-and-standard-deviation-and-variance.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (119 lines) | stat: -rw-r--r-- 6,509 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
<html lang="en">
<head>
<title>Mean and standard deviation and variance - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Statistics.html" title="Statistics">
<link rel="next" href="Absolute-deviation.html" title="Absolute deviation">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Mean-and-standard-deviation-and-variance"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Absolute-deviation.html">Absolute deviation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Statistics.html">Statistics</a>
<hr>
</div>

<h3 class="section">20.1 Mean, Standard Deviation and Variance</h3>

<div class="defun">
&mdash; Function: double <b>gsl_stats_mean</b> (<var>const double data</var>[]<var>, size_t stride, size_t n</var>)<var><a name="index-gsl_005fstats_005fmean-1818"></a></var><br>
<blockquote><p>This function returns the arithmetic mean of <var>data</var>, a dataset of
length <var>n</var> with stride <var>stride</var>.  The arithmetic mean, or
<dfn>sample mean</dfn>, is denoted by \Hat\mu and defined as,

     <pre class="example">          \Hat\mu = (1/N) \sum x_i
</pre>
        <p class="noindent">where x_i are the elements of the dataset <var>data</var>.  For
samples drawn from a gaussian distribution the variance of
\Hat\mu is \sigma^2 / N. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_stats_variance</b> (<var>const double data</var>[]<var>, size_t stride, size_t n</var>)<var><a name="index-gsl_005fstats_005fvariance-1819"></a></var><br>
<blockquote><p>This function returns the estimated, or <dfn>sample</dfn>, variance of
<var>data</var>, a dataset of length <var>n</var> with stride <var>stride</var>.  The
estimated variance is denoted by \Hat\sigma^2 and is defined by,

     <pre class="example">          \Hat\sigma^2 = (1/(N-1)) \sum (x_i - \Hat\mu)^2
</pre>
        <p class="noindent">where x_i are the elements of the dataset <var>data</var>.  Note that
the normalization factor of 1/(N-1) results from the derivation
of \Hat\sigma^2 as an unbiased estimator of the population
variance \sigma^2.  For samples drawn from a gaussian distribution
the variance of \Hat\sigma^2 itself is 2 \sigma^4 / N.

        <p>This function computes the mean via a call to <code>gsl_stats_mean</code>.  If
you have already computed the mean then you can pass it directly to
<code>gsl_stats_variance_m</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_stats_variance_m</b> (<var>const double data</var>[]<var>, size_t stride, size_t n, double mean</var>)<var><a name="index-gsl_005fstats_005fvariance_005fm-1820"></a></var><br>
<blockquote><p>This function returns the sample variance of <var>data</var> relative to the
given value of <var>mean</var>.  The function is computed with \Hat\mu
replaced by the value of <var>mean</var> that you supply,

     <pre class="example">          \Hat\sigma^2 = (1/(N-1)) \sum (x_i - mean)^2
</pre>
        </blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_stats_sd</b> (<var>const double data</var>[]<var>, size_t stride, size_t n</var>)<var><a name="index-gsl_005fstats_005fsd-1821"></a></var><br>
&mdash; Function: double <b>gsl_stats_sd_m</b> (<var>const double data</var>[]<var>, size_t stride, size_t n, double mean</var>)<var><a name="index-gsl_005fstats_005fsd_005fm-1822"></a></var><br>
<blockquote><p>The standard deviation is defined as the square root of the variance. 
These functions return the square root of the corresponding variance
functions above. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_stats_variance_with_fixed_mean</b> (<var>const double data</var>[]<var>, size_t stride, size_t n, double mean</var>)<var><a name="index-gsl_005fstats_005fvariance_005fwith_005ffixed_005fmean-1823"></a></var><br>
<blockquote><p>This function computes an unbiased estimate of the variance of
<var>data</var> when the population mean <var>mean</var> of the underlying
distribution is known <em>a priori</em>.  In this case the estimator for
the variance uses the factor 1/N and the sample mean
\Hat\mu is replaced by the known population mean \mu,

     <pre class="example">          \Hat\sigma^2 = (1/N) \sum (x_i - \mu)^2
</pre>
        </blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_stats_sd_with_fixed_mean</b> (<var>const double data</var>[]<var>, size_t stride, size_t n, double mean</var>)<var><a name="index-gsl_005fstats_005fsd_005fwith_005ffixed_005fmean-1824"></a></var><br>
<blockquote><p>This function calculates the standard deviation of <var>data</var> for a
fixed population mean <var>mean</var>.  The result is the square root of the
corresponding variance function. 
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>