1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
<html lang="en">
<head>
<title>Mean and standard deviation and variance - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Statistics.html" title="Statistics">
<link rel="next" href="Absolute-deviation.html" title="Absolute deviation">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Mean-and-standard-deviation-and-variance"></a>
Next: <a rel="next" accesskey="n" href="Absolute-deviation.html">Absolute deviation</a>,
Up: <a rel="up" accesskey="u" href="Statistics.html">Statistics</a>
<hr>
</div>
<h3 class="section">20.1 Mean, Standard Deviation and Variance</h3>
<div class="defun">
— Function: double <b>gsl_stats_mean</b> (<var>const double data</var>[]<var>, size_t stride, size_t n</var>)<var><a name="index-gsl_005fstats_005fmean-1818"></a></var><br>
<blockquote><p>This function returns the arithmetic mean of <var>data</var>, a dataset of
length <var>n</var> with stride <var>stride</var>. The arithmetic mean, or
<dfn>sample mean</dfn>, is denoted by \Hat\mu and defined as,
<pre class="example"> \Hat\mu = (1/N) \sum x_i
</pre>
<p class="noindent">where x_i are the elements of the dataset <var>data</var>. For
samples drawn from a gaussian distribution the variance of
\Hat\mu is \sigma^2 / N.
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_stats_variance</b> (<var>const double data</var>[]<var>, size_t stride, size_t n</var>)<var><a name="index-gsl_005fstats_005fvariance-1819"></a></var><br>
<blockquote><p>This function returns the estimated, or <dfn>sample</dfn>, variance of
<var>data</var>, a dataset of length <var>n</var> with stride <var>stride</var>. The
estimated variance is denoted by \Hat\sigma^2 and is defined by,
<pre class="example"> \Hat\sigma^2 = (1/(N-1)) \sum (x_i - \Hat\mu)^2
</pre>
<p class="noindent">where x_i are the elements of the dataset <var>data</var>. Note that
the normalization factor of 1/(N-1) results from the derivation
of \Hat\sigma^2 as an unbiased estimator of the population
variance \sigma^2. For samples drawn from a gaussian distribution
the variance of \Hat\sigma^2 itself is 2 \sigma^4 / N.
<p>This function computes the mean via a call to <code>gsl_stats_mean</code>. If
you have already computed the mean then you can pass it directly to
<code>gsl_stats_variance_m</code>.
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_stats_variance_m</b> (<var>const double data</var>[]<var>, size_t stride, size_t n, double mean</var>)<var><a name="index-gsl_005fstats_005fvariance_005fm-1820"></a></var><br>
<blockquote><p>This function returns the sample variance of <var>data</var> relative to the
given value of <var>mean</var>. The function is computed with \Hat\mu
replaced by the value of <var>mean</var> that you supply,
<pre class="example"> \Hat\sigma^2 = (1/(N-1)) \sum (x_i - mean)^2
</pre>
</blockquote></div>
<div class="defun">
— Function: double <b>gsl_stats_sd</b> (<var>const double data</var>[]<var>, size_t stride, size_t n</var>)<var><a name="index-gsl_005fstats_005fsd-1821"></a></var><br>
— Function: double <b>gsl_stats_sd_m</b> (<var>const double data</var>[]<var>, size_t stride, size_t n, double mean</var>)<var><a name="index-gsl_005fstats_005fsd_005fm-1822"></a></var><br>
<blockquote><p>The standard deviation is defined as the square root of the variance.
These functions return the square root of the corresponding variance
functions above.
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_stats_variance_with_fixed_mean</b> (<var>const double data</var>[]<var>, size_t stride, size_t n, double mean</var>)<var><a name="index-gsl_005fstats_005fvariance_005fwith_005ffixed_005fmean-1823"></a></var><br>
<blockquote><p>This function computes an unbiased estimate of the variance of
<var>data</var> when the population mean <var>mean</var> of the underlying
distribution is known <em>a priori</em>. In this case the estimator for
the variance uses the factor 1/N and the sample mean
\Hat\mu is replaced by the known population mean \mu,
<pre class="example"> \Hat\sigma^2 = (1/N) \sum (x_i - \mu)^2
</pre>
</blockquote></div>
<div class="defun">
— Function: double <b>gsl_stats_sd_with_fixed_mean</b> (<var>const double data</var>[]<var>, size_t stride, size_t n, double mean</var>)<var><a name="index-gsl_005fstats_005fsd_005fwith_005ffixed_005fmean-1824"></a></var><br>
<blockquote><p>This function calculates the standard deviation of <var>data</var> for a
fixed population mean <var>mean</var>. The result is the square root of the
corresponding variance function.
</p></blockquote></div>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|