1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
<html lang="en">
<head>
<title>Median and Percentiles - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Statistics.html" title="Statistics">
<link rel="prev" href="Maximum-and-Minimum-values.html" title="Maximum and Minimum values">
<link rel="next" href="Example-statistical-programs.html" title="Example statistical programs">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Median-and-Percentiles"></a>
Next: <a rel="next" accesskey="n" href="Example-statistical-programs.html">Example statistical programs</a>,
Previous: <a rel="previous" accesskey="p" href="Maximum-and-Minimum-values.html">Maximum and Minimum values</a>,
Up: <a rel="up" accesskey="u" href="Statistics.html">Statistics</a>
<hr>
</div>
<h3 class="section">20.9 Median and Percentiles</h3>
<p>The median and percentile functions described in this section operate on
sorted data. For convenience we use <dfn>quantiles</dfn>, measured on a scale
of 0 to 1, instead of percentiles (which use a scale of 0 to 100).
<div class="defun">
— Function: double <b>gsl_stats_median_from_sorted_data</b> (<var>const double sorted_data</var>[]<var>, size_t stride, size_t n</var>)<var><a name="index-gsl_005fstats_005fmedian_005ffrom_005fsorted_005fdata-1857"></a></var><br>
<blockquote><p>This function returns the median value of <var>sorted_data</var>, a dataset
of length <var>n</var> with stride <var>stride</var>. The elements of the array
must be in ascending numerical order. There are no checks to see
whether the data are sorted, so the function <code>gsl_sort</code> should
always be used first.
<p>When the dataset has an odd number of elements the median is the value
of element (n-1)/2. When the dataset has an even number of
elements the median is the mean of the two nearest middle values,
elements (n-1)/2 and n/2. Since the algorithm for
computing the median involves interpolation this function always returns
a floating-point number, even for integer data types.
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_stats_quantile_from_sorted_data</b> (<var>const double sorted_data</var>[]<var>, size_t stride, size_t n, double f</var>)<var><a name="index-gsl_005fstats_005fquantile_005ffrom_005fsorted_005fdata-1858"></a></var><br>
<blockquote><p>This function returns a quantile value of <var>sorted_data</var>, a
double-precision array of length <var>n</var> with stride <var>stride</var>. The
elements of the array must be in ascending numerical order. The
quantile is determined by the <var>f</var>, a fraction between 0 and 1. For
example, to compute the value of the 75th percentile <var>f</var> should have
the value 0.75.
<p>There are no checks to see whether the data are sorted, so the function
<code>gsl_sort</code> should always be used first.
<p>The quantile is found by interpolation, using the formula
<pre class="example"> quantile = (1 - \delta) x_i + \delta x_{i+1}
</pre>
<p class="noindent">where i is <code>floor</code>((n - 1)f) and \delta is
(n-1)f - i.
<p>Thus the minimum value of the array (<code>data[0*stride]</code>) is given by
<var>f</var> equal to zero, the maximum value (<code>data[(n-1)*stride]</code>) is
given by <var>f</var> equal to one and the median value is given by <var>f</var>
equal to 0.5. Since the algorithm for computing quantiles involves
interpolation this function always returns a floating-point number, even
for integer data types.
</p></blockquote></div>
<!-- @node Statistical tests -->
<!-- @section Statistical tests -->
<!-- FIXME, do more work on the statistical tests -->
<!-- @deftypefun double gsl_stats_ttest (const double @var{data1}[], double @var{data2}[], size_t @var{n1}, size_t @var{n2}) -->
<!-- @deftypefunx Statistics double gsl_stats_int_ttest (const double @var{data1}[], double @var{data2}[], size_t @var{n1}, size_t @var{n2}) -->
<!-- The function @code{gsl_stats_ttest} computes the t-test statistic for -->
<!-- the two arrays @var{data1}[] and @var{data2}[], of lengths @var{n1} and -->
<!-- @var{n2} respectively. -->
<!-- The t-test statistic measures the difference between the means of two -->
<!-- datasets. -->
</body></html>
|