1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
|
<html lang="en">
<head>
<title>Numerical Integration Introduction - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Numerical-Integration.html" title="Numerical Integration">
<link rel="next" href="QNG-non_002dadaptive-Gauss_002dKronrod-integration.html" title="QNG non-adaptive Gauss-Kronrod integration">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Numerical-Integration-Introduction"></a>
Next: <a rel="next" accesskey="n" href="QNG-non_002dadaptive-Gauss_002dKronrod-integration.html">QNG non-adaptive Gauss-Kronrod integration</a>,
Up: <a rel="up" accesskey="u" href="Numerical-Integration.html">Numerical Integration</a>
<hr>
</div>
<h3 class="section">16.1 Introduction</h3>
<p>Each algorithm computes an approximation to a definite integral of the
form,
<pre class="example"> I = \int_a^b f(x) w(x) dx
</pre>
<p class="noindent">where w(x) is a weight function (for general integrands w(x)=1).
The user provides absolute and relative error bounds
<!-- {$(\hbox{\it epsabs}, \hbox{\it epsrel}\,)$} -->
(epsabs, epsrel) which specify the following accuracy requirement,
<pre class="example"> |RESULT - I| <= max(epsabs, epsrel |I|)
</pre>
<p class="noindent">where
<!-- {$\hbox{\it RESULT}$} -->
RESULT is the numerical approximation obtained by the
algorithm. The algorithms attempt to estimate the absolute error
<!-- {$\hbox{\it ABSERR} = |\hbox{\it RESULT} - I|$} -->
ABSERR = |RESULT - I| in such a way that the following inequality
holds,
<pre class="example"> |RESULT - I| <= ABSERR <= max(epsabs, epsrel |I|)
</pre>
<p class="noindent">The routines will fail to converge if the error bounds are too
stringent, but always return the best approximation obtained up to that
stage.
<p>The algorithms in <span class="sc">quadpack</span> use a naming convention based on the
following letters,
<pre class="display"> <code>Q</code> - quadrature routine
<code>N</code> - non-adaptive integrator
<code>A</code> - adaptive integrator
<code>G</code> - general integrand (user-defined)
<code>W</code> - weight function with integrand
<code>S</code> - singularities can be more readily integrated
<code>P</code> - points of special difficulty can be supplied
<code>I</code> - infinite range of integration
<code>O</code> - oscillatory weight function, cos or sin
<code>F</code> - Fourier integral
<code>C</code> - Cauchy principal value
</pre>
<p class="noindent">The algorithms are built on pairs of quadrature rules, a higher order
rule and a lower order rule. The higher order rule is used to compute
the best approximation to an integral over a small range. The
difference between the results of the higher order rule and the lower
order rule gives an estimate of the error in the approximation.
<ul class="menu">
<li><a accesskey="1" href="Integrands-without-weight-functions.html">Integrands without weight functions</a>
<li><a accesskey="2" href="Integrands-with-weight-functions.html">Integrands with weight functions</a>
<li><a accesskey="3" href="Integrands-with-singular-weight-functions.html">Integrands with singular weight functions</a>
</ul>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|