File: Numerical-Integration-Introduction.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (106 lines) | stat: -rw-r--r-- 4,985 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
<html lang="en">
<head>
<title>Numerical Integration Introduction - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Numerical-Integration.html" title="Numerical Integration">
<link rel="next" href="QNG-non_002dadaptive-Gauss_002dKronrod-integration.html" title="QNG non-adaptive Gauss-Kronrod integration">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Numerical-Integration-Introduction"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="QNG-non_002dadaptive-Gauss_002dKronrod-integration.html">QNG non-adaptive Gauss-Kronrod integration</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Numerical-Integration.html">Numerical Integration</a>
<hr>
</div>

<h3 class="section">16.1 Introduction</h3>

<p>Each algorithm computes an approximation to a definite integral of the
form,

<pre class="example">     I = \int_a^b f(x) w(x) dx
</pre>
   <p class="noindent">where w(x) is a weight function (for general integrands w(x)=1). 
The user provides absolute and relative error bounds
<!-- {$(\hbox{\it epsabs}, \hbox{\it epsrel}\,)$} -->
(epsabs, epsrel) which specify the following accuracy requirement,

<pre class="example">     |RESULT - I|  &lt;= max(epsabs, epsrel |I|)
</pre>
   <p class="noindent">where
<!-- {$\hbox{\it RESULT}$} -->
RESULT is the numerical approximation obtained by the
algorithm.  The algorithms attempt to estimate the absolute error
<!-- {$\hbox{\it ABSERR} = |\hbox{\it RESULT} - I|$} -->
ABSERR = |RESULT - I| in such a way that the following inequality
holds,

<pre class="example">     |RESULT - I| &lt;= ABSERR &lt;= max(epsabs, epsrel |I|)
</pre>
   <p class="noindent">The routines will fail to converge if the error bounds are too
stringent, but always return the best approximation obtained up to that
stage.

   <p>The algorithms in <span class="sc">quadpack</span> use a naming convention based on the
following letters,

<pre class="display">     <code>Q</code> - quadrature routine
     
     <code>N</code> - non-adaptive integrator
     <code>A</code> - adaptive integrator
     
     <code>G</code> - general integrand (user-defined)
     <code>W</code> - weight function with integrand
     
     <code>S</code> - singularities can be more readily integrated
     <code>P</code> - points of special difficulty can be supplied
     <code>I</code> - infinite range of integration
     <code>O</code> - oscillatory weight function, cos or sin
     <code>F</code> - Fourier integral
     <code>C</code> - Cauchy principal value
</pre>
   <p class="noindent">The algorithms are built on pairs of quadrature rules, a higher order
rule and a lower order rule.  The higher order rule is used to compute
the best approximation to an integral over a small range.  The
difference between the results of the higher order rule and the lower
order rule gives an estimate of the error in the approximation.

<ul class="menu">
<li><a accesskey="1" href="Integrands-without-weight-functions.html">Integrands without weight functions</a>
<li><a accesskey="2" href="Integrands-with-weight-functions.html">Integrands with weight functions</a>
<li><a accesskey="3" href="Integrands-with-singular-weight-functions.html">Integrands with singular weight functions</a>
</ul>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>