1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
|
<html lang="en">
<head>
<title>Overview of Multidimensional Root Finding - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Multidimensional-Root_002dFinding.html" title="Multidimensional Root-Finding">
<link rel="next" href="Initializing-the-Multidimensional-Solver.html" title="Initializing the Multidimensional Solver">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Overview-of-Multidimensional-Root-Finding"></a>
Next: <a rel="next" accesskey="n" href="Initializing-the-Multidimensional-Solver.html">Initializing the Multidimensional Solver</a>,
Up: <a rel="up" accesskey="u" href="Multidimensional-Root_002dFinding.html">Multidimensional Root-Finding</a>
<hr>
</div>
<h3 class="section">34.1 Overview</h3>
<p><a name="index-multidimensional-root-finding_002c-overview-2280"></a>
The problem of multidimensional root finding requires the simultaneous
solution of n equations, f_i, in n variables,
x_i,
<pre class="example"> f_i (x_1, ..., x_n) = 0 for i = 1 ... n.
</pre>
<p class="noindent">In general there are no bracketing methods available for n
dimensional systems, and no way of knowing whether any solutions
exist. All algorithms proceed from an initial guess using a variant of
the Newton iteration,
<pre class="example"> x -> x' = x - J^{-1} f(x)
</pre>
<p class="noindent">where x, f are vector quantities and J is the
Jacobian matrix <!-- {$J_{ij} = \partial f_i / \partial x_j$} -->
J_{ij} = d f_i / d x_j.
Additional strategies can be used to enlarge the region of
convergence. These include requiring a decrease in the norm |f| on
each step proposed by Newton's method, or taking steepest-descent steps in
the direction of the negative gradient of |f|.
<p>Several root-finding algorithms are available within a single framework.
The user provides a high-level driver for the algorithms, and the
library provides the individual functions necessary for each of the
steps. There are three main phases of the iteration. The steps are,
<ul>
<li>initialize solver state, <var>s</var>, for algorithm <var>T</var>
<li>update <var>s</var> using the iteration <var>T</var>
<li>test <var>s</var> for convergence, and repeat iteration if necessary
</ul>
<p class="noindent">The evaluation of the Jacobian matrix can be problematic, either because
programming the derivatives is intractable or because computation of the
n^2 terms of the matrix becomes too expensive. For these reasons
the algorithms provided by the library are divided into two classes according
to whether the derivatives are available or not.
<p>The state for solvers with an analytic Jacobian matrix is held in a
<code>gsl_multiroot_fdfsolver</code> struct. The updating procedure requires
both the function and its derivatives to be supplied by the user.
<p>The state for solvers which do not use an analytic Jacobian matrix is
held in a <code>gsl_multiroot_fsolver</code> struct. The updating procedure
uses only function evaluations (not derivatives). The algorithms
estimate the matrix J or <!-- {$J^{-1}$} -->
J^{-1} by approximate methods.
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|