File: Overview-of-Multidimensional-Root-Finding.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (101 lines) | stat: -rw-r--r-- 4,891 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
<html lang="en">
<head>
<title>Overview of Multidimensional Root Finding - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Multidimensional-Root_002dFinding.html" title="Multidimensional Root-Finding">
<link rel="next" href="Initializing-the-Multidimensional-Solver.html" title="Initializing the Multidimensional Solver">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Overview-of-Multidimensional-Root-Finding"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Initializing-the-Multidimensional-Solver.html">Initializing the Multidimensional Solver</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Multidimensional-Root_002dFinding.html">Multidimensional Root-Finding</a>
<hr>
</div>

<h3 class="section">34.1 Overview</h3>

<p><a name="index-multidimensional-root-finding_002c-overview-2280"></a>
The problem of multidimensional root finding requires the simultaneous
solution of n equations, f_i, in n variables,
x_i,

<pre class="example">     f_i (x_1, ..., x_n) = 0    for i = 1 ... n.
</pre>
   <p class="noindent">In general there are no bracketing methods available for n
dimensional systems, and no way of knowing whether any solutions
exist.  All algorithms proceed from an initial guess using a variant of
the Newton iteration,

<pre class="example">     x -&gt; x' = x - J^{-1} f(x)
</pre>
   <p class="noindent">where x, f are vector quantities and J is the
Jacobian matrix <!-- {$J_{ij} = \partial f_i / \partial x_j$} -->
J_{ij} = d f_i / d x_j. 
Additional strategies can be used to enlarge the region of
convergence.  These include requiring a decrease in the norm |f| on
each step proposed by Newton's method, or taking steepest-descent steps in
the direction of the negative gradient of |f|.

   <p>Several root-finding algorithms are available within a single framework. 
The user provides a high-level driver for the algorithms, and the
library provides the individual functions necessary for each of the
steps.  There are three main phases of the iteration.  The steps are,

     <ul>
<li>initialize solver state, <var>s</var>, for algorithm <var>T</var>

     <li>update <var>s</var> using the iteration <var>T</var>

     <li>test <var>s</var> for convergence, and repeat iteration if necessary
</ul>

<p class="noindent">The evaluation of the Jacobian matrix can be problematic, either because
programming the derivatives is intractable or because computation of the
n^2 terms of the matrix becomes too expensive.  For these reasons
the algorithms provided by the library are divided into two classes according
to whether the derivatives are available or not.

   <p>The state for solvers with an analytic Jacobian matrix is held in a
<code>gsl_multiroot_fdfsolver</code> struct.  The updating procedure requires
both the function and its derivatives to be supplied by the user.

   <p>The state for solvers which do not use an analytic Jacobian matrix is
held in a <code>gsl_multiroot_fsolver</code> struct.  The updating procedure
uses only function evaluations (not derivatives).  The algorithms
estimate the matrix J or <!-- {$J^{-1}$} -->
J^{-1} by approximate methods.

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>