1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
<html lang="en">
<head>
<title>QAWS adaptive integration for singular functions - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Numerical-Integration.html" title="Numerical Integration">
<link rel="prev" href="QAWC-adaptive-integration-for-Cauchy-principal-values.html" title="QAWC adaptive integration for Cauchy principal values">
<link rel="next" href="QAWO-adaptive-integration-for-oscillatory-functions.html" title="QAWO adaptive integration for oscillatory functions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="QAWS-adaptive-integration-for-singular-functions"></a>
Next: <a rel="next" accesskey="n" href="QAWO-adaptive-integration-for-oscillatory-functions.html">QAWO adaptive integration for oscillatory functions</a>,
Previous: <a rel="previous" accesskey="p" href="QAWC-adaptive-integration-for-Cauchy-principal-values.html">QAWC adaptive integration for Cauchy principal values</a>,
Up: <a rel="up" accesskey="u" href="Numerical-Integration.html">Numerical Integration</a>
<hr>
</div>
<h3 class="section">16.8 QAWS adaptive integration for singular functions</h3>
<p><a name="index-QAWS-quadrature-algorithm-1461"></a><a name="index-singular-functions_002c-numerical-integration-of-1462"></a>The QAWS algorithm is designed for integrands with algebraic-logarithmic
singularities at the end-points of an integration region. In order to
work efficiently the algorithm requires a precomputed table of
Chebyshev moments.
<div class="defun">
— Function: gsl_integration_qaws_table * <b>gsl_integration_qaws_table_alloc</b> (<var>double alpha, double beta, int mu, int nu</var>)<var><a name="index-gsl_005fintegration_005fqaws_005ftable_005falloc-1463"></a></var><br>
<blockquote>
<p>This function allocates space for a <code>gsl_integration_qaws_table</code>
struct describing a singular weight function
W(x) with the parameters (\alpha, \beta, \mu, \nu),
<pre class="example"> W(x) = (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x)
</pre>
<p class="noindent">where \alpha > -1, \beta > -1, and \mu = 0, 1,
\nu = 0, 1. The weight function can take four different forms
depending on the values of \mu and \nu,
<pre class="example"> W(x) = (x-a)^alpha (b-x)^beta (mu = 0, nu = 0)
W(x) = (x-a)^alpha (b-x)^beta log(x-a) (mu = 1, nu = 0)
W(x) = (x-a)^alpha (b-x)^beta log(b-x) (mu = 0, nu = 1)
W(x) = (x-a)^alpha (b-x)^beta log(x-a) log(b-x) (mu = 1, nu = 1)
</pre>
<p class="noindent">The singular points (a,b) do not have to be specified until the
integral is computed, where they are the endpoints of the integration
range.
<p>The function returns a pointer to the newly allocated table
<code>gsl_integration_qaws_table</code> if no errors were detected, and 0 in
the case of error.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_integration_qaws_table_set</b> (<var>gsl_integration_qaws_table * t, double alpha, double beta, int mu, int nu</var>)<var><a name="index-gsl_005fintegration_005fqaws_005ftable_005fset-1464"></a></var><br>
<blockquote><p>This function modifies the parameters (\alpha, \beta, \mu, \nu) of
an existing <code>gsl_integration_qaws_table</code> struct <var>t</var>.
</p></blockquote></div>
<div class="defun">
— Function: void <b>gsl_integration_qaws_table_free</b> (<var>gsl_integration_qaws_table * t</var>)<var><a name="index-gsl_005fintegration_005fqaws_005ftable_005ffree-1465"></a></var><br>
<blockquote><p>This function frees all the memory associated with the
<code>gsl_integration_qaws_table</code> struct <var>t</var>.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_integration_qaws</b> (<var>gsl_function * f, const double a, const double b, gsl_integration_qaws_table * t, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr</var>)<var><a name="index-gsl_005fintegration_005fqaws-1466"></a></var><br>
<blockquote>
<p>This function computes the integral of the function f(x) over the
interval (a,b) with the singular weight function
(x-a)^\alpha (b-x)^\beta \log^\mu (x-a) \log^\nu (b-x). The parameters
of the weight function (\alpha, \beta, \mu, \nu) are taken from the
table <var>t</var>. The integral is,
<pre class="example"> I = \int_a^b dx f(x) (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x).
</pre>
<p class="noindent">The adaptive bisection algorithm of QAG is used. When a subinterval
contains one of the endpoints then a special 25-point modified
Clenshaw-Curtis rule is used to control the singularities. For
subintervals which do not include the endpoints an ordinary 15-point
Gauss-Kronrod integration rule is used.
</blockquote></div>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|