File: Radial-Functions-for-Hyperbolic-Space.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (108 lines) | stat: -rw-r--r-- 6,055 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
<html lang="en">
<head>
<title>Radial Functions for Hyperbolic Space - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Legendre-Functions-and-Spherical-Harmonics.html" title="Legendre Functions and Spherical Harmonics">
<link rel="prev" href="Conical-Functions.html" title="Conical Functions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Radial-Functions-for-Hyperbolic-Space"></a>
Previous:&nbsp;<a rel="previous" accesskey="p" href="Conical-Functions.html">Conical Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Legendre-Functions-and-Spherical-Harmonics.html">Legendre Functions and Spherical Harmonics</a>
<hr>
</div>

<h4 class="subsection">7.24.4 Radial Functions for Hyperbolic Space</h4>

<p>The following spherical functions are specializations of Legendre
functions which give the regular eigenfunctions of the Laplacian on a
3-dimensional hyperbolic space H3d.  Of particular interest is
the flat limit, \lambda \to \infty, \eta \to 0,
\lambda\eta fixed.

<div class="defun">
&mdash; Function: double <b>gsl_sf_legendre_H3d_0</b> (<var>double lambda, double eta</var>)<var><a name="index-gsl_005fsf_005flegendre_005fH3d_005f0-719"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_H3d_0_e</b> (<var>double lambda, double eta, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flegendre_005fH3d_005f0_005fe-720"></a></var><br>
<blockquote><p>These routines compute the zeroth radial eigenfunction of the Laplacian on the
3-dimensional hyperbolic space,
<!-- {$$L^{H3d}_0(\lambda,\eta) := {\sin(\lambda\eta) \over \lambda\sinh(\eta)}$$} -->
L^{H3d}_0(\lambda,\eta) := \sin(\lambda\eta)/(\lambda\sinh(\eta))
for <!-- {$\eta \ge 0$} -->
\eta &gt;= 0. 
In the flat limit this takes the form
<!-- {$L^{H3d}_0(\lambda,\eta) = j_0(\lambda\eta)$} -->
L^{H3d}_0(\lambda,\eta) = j_0(\lambda\eta). 
<!-- Exceptional Return Values: GSL_EDOM -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_legendre_H3d_1</b> (<var>double lambda, double eta</var>)<var><a name="index-gsl_005fsf_005flegendre_005fH3d_005f1-721"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_H3d_1_e</b> (<var>double lambda, double eta, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flegendre_005fH3d_005f1_005fe-722"></a></var><br>
<blockquote><p>These routines compute the first radial eigenfunction of the Laplacian on
the 3-dimensional hyperbolic space,
<!-- {$$L^{H3d}_1(\lambda,\eta) := {1\over\sqrt{\lambda^2 + 1}} {\left(\sin(\lambda \eta)\over \lambda \sinh(\eta)\right)} \left(\coth(\eta) - \lambda \cot(\lambda\eta)\right)$$} -->
L^{H3d}_1(\lambda,\eta) := 1/\sqrt{\lambda^2 + 1} \sin(\lambda \eta)/(\lambda \sinh(\eta)) (\coth(\eta) - \lambda \cot(\lambda\eta))
for <!-- {$\eta \ge 0$} -->
\eta &gt;= 0. 
In the flat limit this takes the form
<!-- {$L^{H3d}_1(\lambda,\eta) = j_1(\lambda\eta)$} -->
L^{H3d}_1(\lambda,\eta) = j_1(\lambda\eta). 
<!-- Exceptional Return Values: GSL_EDOM -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_legendre_H3d</b> (<var>int l, double lambda, double eta</var>)<var><a name="index-gsl_005fsf_005flegendre_005fH3d-723"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_H3d_e</b> (<var>int l, double lambda, double eta, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flegendre_005fH3d_005fe-724"></a></var><br>
<blockquote><p>These routines compute the <var>l</var>-th radial eigenfunction of the
Laplacian on the 3-dimensional hyperbolic space <!-- {$\eta \ge 0$} -->
\eta &gt;= 0, <!-- {$l \ge 0$} -->
l &gt;= 0. In the flat limit this takes the form
<!-- {$L^{H3d}_l(\lambda,\eta) = j_l(\lambda\eta)$} -->
L^{H3d}_l(\lambda,\eta) = j_l(\lambda\eta). 
<!-- Exceptional Return Values: GSL_EDOM -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_sf_legendre_H3d_array</b> (<var>int lmax, double lambda, double eta, double result_array</var>[])<var><a name="index-gsl_005fsf_005flegendre_005fH3d_005farray-725"></a></var><br>
<blockquote><p>This function computes an array of radial eigenfunctions
<!-- {$L^{H3d}_l( \lambda, \eta)$} -->
L^{H3d}_l(\lambda, \eta)
for <!-- {$0 \le l \le lmax$} -->
0 &lt;= l &lt;= lmax. 
<!-- Exceptional Return Values: -->
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>