1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
<html lang="en">
<head>
<title>Real Symmetric Matrices - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Eigensystems.html" title="Eigensystems">
<link rel="next" href="Complex-Hermitian-Matrices.html" title="Complex Hermitian Matrices">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Real-Symmetric-Matrices"></a>
Next: <a rel="next" accesskey="n" href="Complex-Hermitian-Matrices.html">Complex Hermitian Matrices</a>,
Up: <a rel="up" accesskey="u" href="Eigensystems.html">Eigensystems</a>
<hr>
</div>
<h3 class="section">14.1 Real Symmetric Matrices</h3>
<p><a name="index-symmetric-matrix_002c-real_002c-eigensystem-1331"></a><a name="index-real-symmetric-matrix_002c-eigensystem-1332"></a>
For real symmetric matrices, the library uses the symmetric
bidiagonalization and QR reduction method. This is described in Golub
& van Loan, section 8.3. The computed eigenvalues are accurate to an
absolute accuracy of \epsilon ||A||_2, where \epsilon is
the machine precision.
<div class="defun">
— Function: gsl_eigen_symm_workspace * <b>gsl_eigen_symm_alloc</b> (<var>const size_t n</var>)<var><a name="index-gsl_005feigen_005fsymm_005falloc-1333"></a></var><br>
<blockquote><p>This function allocates a workspace for computing eigenvalues of
<var>n</var>-by-<var>n</var> real symmetric matrices. The size of the workspace
is O(2n).
</p></blockquote></div>
<div class="defun">
— Function: void <b>gsl_eigen_symm_free</b> (<var>gsl_eigen_symm_workspace * w</var>)<var><a name="index-gsl_005feigen_005fsymm_005ffree-1334"></a></var><br>
<blockquote><p>This function frees the memory associated with the workspace <var>w</var>.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_eigen_symm</b> (<var>gsl_matrix * A, gsl_vector * eval, gsl_eigen_symm_workspace * w</var>)<var><a name="index-gsl_005feigen_005fsymm-1335"></a></var><br>
<blockquote><p>This function computes the eigenvalues of the real symmetric matrix
<var>A</var>. Additional workspace of the appropriate size must be provided
in <var>w</var>. The diagonal and lower triangular part of <var>A</var> are
destroyed during the computation, but the strict upper triangular part
is not referenced. The eigenvalues are stored in the vector <var>eval</var>
and are unordered.
</p></blockquote></div>
<div class="defun">
— Function: gsl_eigen_symmv_workspace * <b>gsl_eigen_symmv_alloc</b> (<var>const size_t n</var>)<var><a name="index-gsl_005feigen_005fsymmv_005falloc-1336"></a></var><br>
<blockquote><p>This function allocates a workspace for computing eigenvalues and
eigenvectors of <var>n</var>-by-<var>n</var> real symmetric matrices. The size of
the workspace is O(4n).
</p></blockquote></div>
<div class="defun">
— Function: void <b>gsl_eigen_symmv_free</b> (<var>gsl_eigen_symmv_workspace * w</var>)<var><a name="index-gsl_005feigen_005fsymmv_005ffree-1337"></a></var><br>
<blockquote><p>This function frees the memory associated with the workspace <var>w</var>.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_eigen_symmv</b> (<var>gsl_matrix * A, gsl_vector * eval, gsl_matrix * evec, gsl_eigen_symmv_workspace * w</var>)<var><a name="index-gsl_005feigen_005fsymmv-1338"></a></var><br>
<blockquote><p>This function computes the eigenvalues and eigenvectors of the real
symmetric matrix <var>A</var>. Additional workspace of the appropriate size
must be provided in <var>w</var>. The diagonal and lower triangular part of
<var>A</var> are destroyed during the computation, but the strict upper
triangular part is not referenced. The eigenvalues are stored in the
vector <var>eval</var> and are unordered. The corresponding eigenvectors are
stored in the columns of the matrix <var>evec</var>. For example, the
eigenvector in the first column corresponds to the first eigenvalue.
The eigenvectors are guaranteed to be mutually orthogonal and normalised
to unit magnitude.
</p></blockquote></div>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|