1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
<html lang="en">
<head>
<title>Search Stopping Parameters for Minimization Algorithms - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Nonlinear-Least_002dSquares-Fitting.html" title="Nonlinear Least-Squares Fitting">
<link rel="prev" href="Iteration-of-the-Minimization-Algorithm.html" title="Iteration of the Minimization Algorithm">
<link rel="next" href="Minimization-Algorithms-using-Derivatives.html" title="Minimization Algorithms using Derivatives">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Search-Stopping-Parameters-for-Minimization-Algorithms"></a>
Next: <a rel="next" accesskey="n" href="Minimization-Algorithms-using-Derivatives.html">Minimization Algorithms using Derivatives</a>,
Previous: <a rel="previous" accesskey="p" href="Iteration-of-the-Minimization-Algorithm.html">Iteration of the Minimization Algorithm</a>,
Up: <a rel="up" accesskey="u" href="Nonlinear-Least_002dSquares-Fitting.html">Nonlinear Least-Squares Fitting</a>
<hr>
</div>
<h3 class="section">37.5 Search Stopping Parameters</h3>
<p><a name="index-nonlinear-fitting_002c-stopping-parameters-2409"></a>
A minimization procedure should stop when one of the following conditions is
true:
<ul>
<li>A minimum has been found to within the user-specified precision.
<li>A user-specified maximum number of iterations has been reached.
<li>An error has occurred.
</ul>
<p class="noindent">The handling of these conditions is under user control. The functions
below allow the user to test the current estimate of the best-fit
parameters in several standard ways.
<div class="defun">
— Function: int <b>gsl_multifit_test_delta</b> (<var>const gsl_vector * dx, const gsl_vector * x, double epsabs, double epsrel</var>)<var><a name="index-gsl_005fmultifit_005ftest_005fdelta-2410"></a></var><br>
<blockquote>
<p>This function tests for the convergence of the sequence by comparing the
last step <var>dx</var> with the absolute error <var>epsabs</var> and relative
error <var>epsrel</var> to the current position <var>x</var>. The test returns
<code>GSL_SUCCESS</code> if the following condition is achieved,
<pre class="example"> |dx_i| < epsabs + epsrel |x_i|
</pre>
<p class="noindent">for each component of <var>x</var> and returns <code>GSL_CONTINUE</code> otherwise.
</p></blockquote></div>
<p><a name="index-residual_002c-in-nonlinear-systems-of-equations-2411"></a>
<div class="defun">
— Function: int <b>gsl_multifit_test_gradient</b> (<var>const gsl_vector * g, double epsabs</var>)<var><a name="index-gsl_005fmultifit_005ftest_005fgradient-2412"></a></var><br>
<blockquote><p>This function tests the residual gradient <var>g</var> against the absolute
error bound <var>epsabs</var>. Mathematically, the gradient should be
exactly zero at the minimum. The test returns <code>GSL_SUCCESS</code> if the
following condition is achieved,
<pre class="example"> \sum_i |g_i| < epsabs
</pre>
<p class="noindent">and returns <code>GSL_CONTINUE</code> otherwise. This criterion is suitable
for situations where the precise location of the minimum, x,
is unimportant provided a value can be found where the gradient is small
enough.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_multifit_gradient</b> (<var>const gsl_matrix * J, const gsl_vector * f, gsl_vector * g</var>)<var><a name="index-gsl_005fmultifit_005fgradient-2413"></a></var><br>
<blockquote><p>This function computes the gradient <var>g</var> of \Phi(x) = (1/2)
||F(x)||^2 from the Jacobian matrix J and the function values
<var>f</var>, using the formula g = J^T f.
</p></blockquote></div>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|