File: The-Gaussian-Distribution.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (115 lines) | stat: -rw-r--r-- 7,008 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
<html lang="en">
<head>
<title>The Gaussian Distribution - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Random-Number-Distributions.html" title="Random Number Distributions">
<link rel="prev" href="Random-Number-Distribution-Introduction.html" title="Random Number Distribution Introduction">
<link rel="next" href="The-Gaussian-Tail-Distribution.html" title="The Gaussian Tail Distribution">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="The-Gaussian-Distribution"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="The-Gaussian-Tail-Distribution.html">The Gaussian Tail Distribution</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Random-Number-Distribution-Introduction.html">Random Number Distribution Introduction</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Random-Number-Distributions.html">Random Number Distributions</a>
<hr>
</div>

<h3 class="section">19.2 The Gaussian Distribution</h3>

<div class="defun">
&mdash; Function: double <b>gsl_ran_gaussian</b> (<var>const gsl_rng * r, double sigma</var>)<var><a name="index-gsl_005fran_005fgaussian-1578"></a></var><br>
<blockquote><p><a name="index-Gaussian-distribution-1579"></a>This function returns a Gaussian random variate, with mean zero and
standard deviation <var>sigma</var>.  The probability distribution for
Gaussian random variates is,

     <pre class="example">          p(x) dx = {1 \over \sqrt{2 \pi \sigma^2}} \exp (-x^2 / 2\sigma^2) dx
</pre>
        <p class="noindent">for x in the range -\infty to +\infty.  Use the
transformation z = \mu + x on the numbers returned by
<code>gsl_ran_gaussian</code> to obtain a Gaussian distribution with mean
\mu.  This function uses the Box-Mueller algorithm which requires two
calls to the random number generator <var>r</var>. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_ran_gaussian_pdf</b> (<var>double x, double sigma</var>)<var><a name="index-gsl_005fran_005fgaussian_005fpdf-1580"></a></var><br>
<blockquote><p>This function computes the probability density p(x) at <var>x</var>
for a Gaussian distribution with standard deviation <var>sigma</var>, using
the formula given above. 
</p></blockquote></div>

   <pre class="sp">

</pre>

<div class="defun">
&mdash; Function: double <b>gsl_ran_gaussian_ziggurat</b> (<var>const gsl_rng * r, double sigma</var>)<var><a name="index-gsl_005fran_005fgaussian_005fziggurat-1581"></a></var><br>
&mdash; Function: double <b>gsl_ran_gaussian_ratio_method</b> (<var>const gsl_rng * r, double sigma</var>)<var><a name="index-gsl_005fran_005fgaussian_005fratio_005fmethod-1582"></a></var><br>
<blockquote><p>This function computes a Gaussian random variate using the alternative
Marsaglia-Tsang ziggurat and Kinderman-Monahan-Leva ratio methods.  The
Ziggurat algorithm is the fastest available algorithm in most cases. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_ran_ugaussian</b> (<var>const gsl_rng * r</var>)<var><a name="index-gsl_005fran_005fugaussian-1583"></a></var><br>
&mdash; Function: double <b>gsl_ran_ugaussian_pdf</b> (<var>double x</var>)<var><a name="index-gsl_005fran_005fugaussian_005fpdf-1584"></a></var><br>
&mdash; Function: double <b>gsl_ran_ugaussian_ratio_method</b> (<var>const gsl_rng * r</var>)<var><a name="index-gsl_005fran_005fugaussian_005fratio_005fmethod-1585"></a></var><br>
<blockquote><p>These functions compute results for the unit Gaussian distribution.  They
are equivalent to the functions above with a standard deviation of one,
<var>sigma</var> = 1. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_cdf_gaussian_P</b> (<var>double x, double sigma</var>)<var><a name="index-gsl_005fcdf_005fgaussian_005fP-1586"></a></var><br>
&mdash; Function: double <b>gsl_cdf_gaussian_Q</b> (<var>double x, double sigma</var>)<var><a name="index-gsl_005fcdf_005fgaussian_005fQ-1587"></a></var><br>
&mdash; Function: double <b>gsl_cdf_gaussian_Pinv</b> (<var>double P, double sigma</var>)<var><a name="index-gsl_005fcdf_005fgaussian_005fPinv-1588"></a></var><br>
&mdash; Function: double <b>gsl_cdf_gaussian_Qinv</b> (<var>double Q, double sigma</var>)<var><a name="index-gsl_005fcdf_005fgaussian_005fQinv-1589"></a></var><br>
<blockquote><p>These functions compute the cumulative distribution functions
P(x), Q(x) and their inverses for the Gaussian
distribution with standard deviation <var>sigma</var>. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_cdf_ugaussian_P</b> (<var>double x</var>)<var><a name="index-gsl_005fcdf_005fugaussian_005fP-1590"></a></var><br>
&mdash; Function: double <b>gsl_cdf_ugaussian_Q</b> (<var>double x</var>)<var><a name="index-gsl_005fcdf_005fugaussian_005fQ-1591"></a></var><br>
&mdash; Function: double <b>gsl_cdf_ugaussian_Pinv</b> (<var>double P</var>)<var><a name="index-gsl_005fcdf_005fugaussian_005fPinv-1592"></a></var><br>
&mdash; Function: double <b>gsl_cdf_ugaussian_Qinv</b> (<var>double Q</var>)<var><a name="index-gsl_005fcdf_005fugaussian_005fQinv-1593"></a></var><br>
<blockquote><p>These functions compute the cumulative distribution functions
P(x), Q(x) and their inverses for the unit Gaussian
distribution. 
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>