1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
<html lang="en">
<head>
<title>The Levy skew alpha-Stable Distribution - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Random-Number-Distributions.html" title="Random Number Distributions">
<link rel="prev" href="The-Levy-alpha_002dStable-Distributions.html" title="The Levy alpha-Stable Distributions">
<link rel="next" href="The-Gamma-Distribution.html" title="The Gamma Distribution">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="The-Levy-skew-alpha-Stable-Distribution"></a>
<a name="The-Levy-skew-alpha_002dStable-Distribution"></a>
Next: <a rel="next" accesskey="n" href="The-Gamma-Distribution.html">The Gamma Distribution</a>,
Previous: <a rel="previous" accesskey="p" href="The-Levy-alpha_002dStable-Distributions.html">The Levy alpha-Stable Distributions</a>,
Up: <a rel="up" accesskey="u" href="Random-Number-Distributions.html">Random Number Distributions</a>
<hr>
</div>
<h3 class="section">19.13 The Levy skew alpha-Stable Distribution</h3>
<div class="defun">
— Function: double <b>gsl_ran_levy_skew</b> (<var>const gsl_rng * r, double c, double alpha, double beta</var>)<var><a name="index-gsl_005fran_005flevy_005fskew-1646"></a></var><br>
<blockquote><p><a name="index-Levy-distribution_002c-skew-1647"></a><a name="index-Skew-Levy-distribution-1648"></a>This function returns a random variate from the Levy skew stable
distribution with scale <var>c</var>, exponent <var>alpha</var> and skewness
parameter <var>beta</var>. The skewness parameter must lie in the range
[-1,1]. The Levy skew stable probability distribution is defined
by a fourier transform,
<pre class="example"> p(x) = {1 \over 2 \pi} \int_{-\infty}^{+\infty} dt \exp(-it x - |c t|^alpha (1-i beta sign(t) tan(pi alpha/2)))
</pre>
<p class="noindent">When \alpha = 1 the term \tan(\pi \alpha/2) is replaced by
-(2/\pi)\log|t|. There is no explicit solution for the form of
p(x) and the library does not define a corresponding <code>pdf</code>
function. For \alpha = 2 the distribution reduces to a Gaussian
distribution with <!-- {$\sigma = \sqrt{2} c$} -->
\sigma = \sqrt{2} c and the skewness parameter has no effect.
For \alpha < 1 the tails of the distribution become extremely
wide. The symmetric distribution corresponds to \beta =
0.
<p>The algorithm only works for <!-- {$0 < \alpha \le 2$} -->
0 < alpha <= 2.
</p></blockquote></div>
<p>The Levy alpha-stable distributions have the property that if N
alpha-stable variates are drawn from the distribution p(c, \alpha,
\beta) then the sum Y = X_1 + X_2 + \dots + X_N will also be
distributed as an alpha-stable variate,
<!-- {$p(N^{1/\alpha} c, \alpha, \beta)$} -->
p(N^(1/\alpha) c, \alpha, \beta).
<!-- PDF not available because there is no analytic expression for it -->
<!-- @deftypefun double gsl_ran_levy_pdf (double @var{x}, double @var{mu}) -->
<!-- This function computes the probability density @math{p(x)} at @var{x} -->
<!-- for a symmetric Levy distribution with scale parameter @var{mu} and -->
<!-- exponent @var{a}, using the formula given above. -->
<!-- @end deftypefun -->
<pre class="sp">
</pre>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|