File: The-Multinomial-Distribution.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (96 lines) | stat: -rw-r--r-- 5,086 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
<html lang="en">
<head>
<title>The Multinomial Distribution - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Random-Number-Distributions.html" title="Random Number Distributions">
<link rel="prev" href="The-Binomial-Distribution.html" title="The Binomial Distribution">
<link rel="next" href="The-Negative-Binomial-Distribution.html" title="The Negative Binomial Distribution">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="The-Multinomial-Distribution"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="The-Negative-Binomial-Distribution.html">The Negative Binomial Distribution</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="The-Binomial-Distribution.html">The Binomial Distribution</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Random-Number-Distributions.html">Random Number Distributions</a>
<hr>
</div>

<h3 class="section">19.32 The Multinomial Distribution</h3>

<div class="defun">
&mdash; Function: void <b>gsl_ran_multinomial</b> (<var>const gsl_rng * r, size_t K, unsigned int N, const double p</var>[]<var>, unsigned int n</var>[])<var><a name="index-gsl_005fran_005fmultinomial-1778"></a></var><br>
<blockquote><p><a name="index-Multinomial-distribution-1779"></a>
This function computes a random sample <var>n</var>[] from the multinomial
distribution formed by <var>N</var> trials from an underlying distribution
<var>p</var>[<var>K</var>]. The distribution function for <var>n</var>[] is,

     <pre class="example">          P(n_1, n_2, ..., n_K) =
            (N!/(n_1! n_2! ... n_K!)) p_1^n_1 p_2^n_2 ... p_K^n_K
</pre>
        <p class="noindent">where <!-- {($n_1$, $n_2$, $\ldots$, $n_K$)} -->
(n_1, n_2, ..., n_K)
are nonnegative integers with
<!-- {$\sum_{k=1}^{K} n_k =N$} -->
sum_{k=1}^K n_k = N,
and
<!-- {$(p_1, p_2, \ldots, p_K)$} -->
(p_1, p_2, ..., p_K)
is a probability distribution with \sum p_i = 1. 
If the array <var>p</var>[<var>K</var>] is not normalized then its entries will be
treated as weights and normalized appropriately.  The arrays <var>n</var>[]
and <var>p</var>[] must both be of length <var>K</var>.

        <p>Random variates are generated using the conditional binomial method (see
C.S. David, <cite>The computer generation of multinomial random
variates</cite>, Comp. Stat. Data Anal. 16 (1993) 205&ndash;217 for details). 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_ran_multinomial_pdf</b> (<var>size_t K, const double p</var>[]<var>, const unsigned int n</var>[])<var><a name="index-gsl_005fran_005fmultinomial_005fpdf-1780"></a></var><br>
<blockquote><p>This function computes the probability
<!-- {$P(n_1, n_2, \ldots, n_K)$} -->
P(n_1, n_2, ..., n_K)
of sampling <var>n</var>[<var>K</var>] from a multinomial distribution
with parameters <var>p</var>[<var>K</var>], using the formula given above. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_ran_multinomial_lnpdf</b> (<var>size_t K, const double p</var>[]<var>, const unsigned int n</var>[])<var><a name="index-gsl_005fran_005fmultinomial_005flnpdf-1781"></a></var><br>
<blockquote><p>This function returns the logarithm of the probability for the
multinomial distribution <!-- {$P(n_1, n_2, \ldots, n_K)$} -->
P(n_1, n_2, ..., n_K) with parameters <var>p</var>[<var>K</var>]. 
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>