File: Tridiagonal-Systems.html

package info (click to toggle)
gsl-ref-html 1.10-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,496 kB
  • ctags: 2,955
  • sloc: makefile: 33
file content (123 lines) | stat: -rw-r--r-- 6,257 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
<html lang="en">
<head>
<title>Tridiagonal Systems - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Linear-Algebra.html" title="Linear Algebra">
<link rel="prev" href="Householder-solver-for-linear-systems.html" title="Householder solver for linear systems">
<link rel="next" href="Balancing.html" title="Balancing">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Tridiagonal-Systems"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Balancing.html">Balancing</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Householder-solver-for-linear-systems.html">Householder solver for linear systems</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Linear-Algebra.html">Linear Algebra</a>
<hr>
</div>

<h3 class="section">13.13 Tridiagonal Systems</h3>

<p><a name="index-tridiagonal-systems-1323"></a>
The functions described in this section efficiently solve symmetric,
non-symmetric and cyclic tridiagonal systems with minimal storage. 
Note that the current implementations of these functions use a variant
of Cholesky decomposition, so the tridiagonal matrix must be positive
definite.  For non-positive definite matrices, the functions return
the error code <code>GSL_ESING</code>.

<div class="defun">
&mdash; Function: int <b>gsl_linalg_solve_tridiag</b> (<var>const gsl_vector * diag, const gsl_vector * e, const gsl_vector * f, const gsl_vector * b, gsl_vector * x</var>)<var><a name="index-gsl_005flinalg_005fsolve_005ftridiag-1324"></a></var><br>
<blockquote><p>This function solves the general N-by-N system A x =
b where <var>A</var> is tridiagonal (<!-- {$N\geq 2$} -->
N &gt;= 2). The super-diagonal and
sub-diagonal vectors <var>e</var> and <var>f</var> must be one element shorter
than the diagonal vector <var>diag</var>.  The form of <var>A</var> for the 4-by-4
case is shown below,

     <pre class="example">          A = ( d_0 e_0  0   0  )
              ( f_0 d_1 e_1  0  )
              (  0  f_1 d_2 e_2 )
              (  0   0  f_2 d_3 )
</pre>
        <p class="noindent"></p></blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_linalg_solve_symm_tridiag</b> (<var>const gsl_vector * diag, const gsl_vector * e, const gsl_vector * b, gsl_vector * x</var>)<var><a name="index-gsl_005flinalg_005fsolve_005fsymm_005ftridiag-1325"></a></var><br>
<blockquote><p>This function solves the general N-by-N system A x =
b where <var>A</var> is symmetric tridiagonal (<!-- {$N\geq 2$} -->
N &gt;= 2).  The off-diagonal vector
<var>e</var> must be one element shorter than the diagonal vector <var>diag</var>. 
The form of <var>A</var> for the 4-by-4 case is shown below,

     <pre class="example">          A = ( d_0 e_0  0   0  )
              ( e_0 d_1 e_1  0  )
              (  0  e_1 d_2 e_2 )
              (  0   0  e_2 d_3 )
</pre>
        </blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_linalg_solve_cyc_tridiag</b> (<var>const gsl_vector * diag, const gsl_vector * e, const gsl_vector * f, const gsl_vector * b, gsl_vector * x</var>)<var><a name="index-gsl_005flinalg_005fsolve_005fcyc_005ftridiag-1326"></a></var><br>
<blockquote><p>This function solves the general N-by-N system A x =
b where <var>A</var> is cyclic tridiagonal (<!-- {$N\geq 3$} -->
N &gt;= 3).  The cyclic super-diagonal and
sub-diagonal vectors <var>e</var> and <var>f</var> must have the same number of
elements as the diagonal vector <var>diag</var>.  The form of <var>A</var> for the
4-by-4 case is shown below,

     <pre class="example">          A = ( d_0 e_0  0  f_3 )
              ( f_0 d_1 e_1  0  )
              (  0  f_1 d_2 e_2 )
              ( e_3  0  f_2 d_3 )
</pre>
        </blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_linalg_solve_symm_cyc_tridiag</b> (<var>const gsl_vector * diag, const gsl_vector * e, const gsl_vector * b, gsl_vector * x</var>)<var><a name="index-gsl_005flinalg_005fsolve_005fsymm_005fcyc_005ftridiag-1327"></a></var><br>
<blockquote><p>This function solves the general N-by-N system A x =
b where <var>A</var> is symmetric cyclic tridiagonal (<!-- {$N\geq 3$} -->
N &gt;= 3).  The cyclic
off-diagonal vector <var>e</var> must have the same number of elements as the
diagonal vector <var>diag</var>.  The form of <var>A</var> for the 4-by-4 case is
shown below,

     <pre class="example">          A = ( d_0 e_0  0  e_3 )
              ( e_0 d_1 e_1  0  )
              (  0  e_1 d_2 e_2 )
              ( e_3  0  e_2 d_3 )
</pre>
        </blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>