1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
<html lang="en">
<head>
<title>Tridiagonal Systems - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.8">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Linear-Algebra.html" title="Linear Algebra">
<link rel="prev" href="Householder-solver-for-linear-systems.html" title="Householder solver for linear systems">
<link rel="next" href="Balancing.html" title="Balancing">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have freedom to copy and modify this
GNU Manual, like GNU software.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Tridiagonal-Systems"></a>
Next: <a rel="next" accesskey="n" href="Balancing.html">Balancing</a>,
Previous: <a rel="previous" accesskey="p" href="Householder-solver-for-linear-systems.html">Householder solver for linear systems</a>,
Up: <a rel="up" accesskey="u" href="Linear-Algebra.html">Linear Algebra</a>
<hr>
</div>
<h3 class="section">13.13 Tridiagonal Systems</h3>
<p><a name="index-tridiagonal-systems-1323"></a>
The functions described in this section efficiently solve symmetric,
non-symmetric and cyclic tridiagonal systems with minimal storage.
Note that the current implementations of these functions use a variant
of Cholesky decomposition, so the tridiagonal matrix must be positive
definite. For non-positive definite matrices, the functions return
the error code <code>GSL_ESING</code>.
<div class="defun">
— Function: int <b>gsl_linalg_solve_tridiag</b> (<var>const gsl_vector * diag, const gsl_vector * e, const gsl_vector * f, const gsl_vector * b, gsl_vector * x</var>)<var><a name="index-gsl_005flinalg_005fsolve_005ftridiag-1324"></a></var><br>
<blockquote><p>This function solves the general N-by-N system A x =
b where <var>A</var> is tridiagonal (<!-- {$N\geq 2$} -->
N >= 2). The super-diagonal and
sub-diagonal vectors <var>e</var> and <var>f</var> must be one element shorter
than the diagonal vector <var>diag</var>. The form of <var>A</var> for the 4-by-4
case is shown below,
<pre class="example"> A = ( d_0 e_0 0 0 )
( f_0 d_1 e_1 0 )
( 0 f_1 d_2 e_2 )
( 0 0 f_2 d_3 )
</pre>
<p class="noindent"></p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_linalg_solve_symm_tridiag</b> (<var>const gsl_vector * diag, const gsl_vector * e, const gsl_vector * b, gsl_vector * x</var>)<var><a name="index-gsl_005flinalg_005fsolve_005fsymm_005ftridiag-1325"></a></var><br>
<blockquote><p>This function solves the general N-by-N system A x =
b where <var>A</var> is symmetric tridiagonal (<!-- {$N\geq 2$} -->
N >= 2). The off-diagonal vector
<var>e</var> must be one element shorter than the diagonal vector <var>diag</var>.
The form of <var>A</var> for the 4-by-4 case is shown below,
<pre class="example"> A = ( d_0 e_0 0 0 )
( e_0 d_1 e_1 0 )
( 0 e_1 d_2 e_2 )
( 0 0 e_2 d_3 )
</pre>
</blockquote></div>
<div class="defun">
— Function: int <b>gsl_linalg_solve_cyc_tridiag</b> (<var>const gsl_vector * diag, const gsl_vector * e, const gsl_vector * f, const gsl_vector * b, gsl_vector * x</var>)<var><a name="index-gsl_005flinalg_005fsolve_005fcyc_005ftridiag-1326"></a></var><br>
<blockquote><p>This function solves the general N-by-N system A x =
b where <var>A</var> is cyclic tridiagonal (<!-- {$N\geq 3$} -->
N >= 3). The cyclic super-diagonal and
sub-diagonal vectors <var>e</var> and <var>f</var> must have the same number of
elements as the diagonal vector <var>diag</var>. The form of <var>A</var> for the
4-by-4 case is shown below,
<pre class="example"> A = ( d_0 e_0 0 f_3 )
( f_0 d_1 e_1 0 )
( 0 f_1 d_2 e_2 )
( e_3 0 f_2 d_3 )
</pre>
</blockquote></div>
<div class="defun">
— Function: int <b>gsl_linalg_solve_symm_cyc_tridiag</b> (<var>const gsl_vector * diag, const gsl_vector * e, const gsl_vector * b, gsl_vector * x</var>)<var><a name="index-gsl_005flinalg_005fsolve_005fsymm_005fcyc_005ftridiag-1327"></a></var><br>
<blockquote><p>This function solves the general N-by-N system A x =
b where <var>A</var> is symmetric cyclic tridiagonal (<!-- {$N\geq 3$} -->
N >= 3). The cyclic
off-diagonal vector <var>e</var> must have the same number of elements as the
diagonal vector <var>diag</var>. The form of <var>A</var> for the 4-by-4 case is
shown below,
<pre class="example"> A = ( d_0 e_0 0 e_3 )
( e_0 d_1 e_1 0 )
( 0 e_1 d_2 e_2 )
( e_3 0 e_2 d_3 )
</pre>
</blockquote></div>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|