File: Associated-Legendre-Polynomials-and-Spherical-Harmonics.html

package info (click to toggle)
gsl-ref-html 1.14-1
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 4,628 kB
  • ctags: 3,088
  • sloc: makefile: 33
file content (122 lines) | stat: -rw-r--r-- 7,126 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
<html lang="en">
<head>
<title>Associated Legendre Polynomials and Spherical Harmonics - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Legendre-Functions-and-Spherical-Harmonics.html" title="Legendre Functions and Spherical Harmonics">
<link rel="prev" href="Legendre-Polynomials.html" title="Legendre Polynomials">
<link rel="next" href="Conical-Functions.html" title="Conical Functions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Associated-Legendre-Polynomials-and-Spherical-Harmonics"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Conical-Functions.html">Conical Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Legendre-Polynomials.html">Legendre Polynomials</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Legendre-Functions-and-Spherical-Harmonics.html">Legendre Functions and Spherical Harmonics</a>
<hr>
</div>

<h4 class="subsection">7.24.2 Associated Legendre Polynomials and Spherical Harmonics</h4>

<p>The following functions compute the associated Legendre Polynomials
P_l^m(x).  Note that this function grows combinatorially with
l and can overflow for l larger than about 150.  There is
no trouble for small m, but overflow occurs when m and
l are both large.  Rather than allow overflows, these functions
refuse to calculate P_l^m(x) and return <code>GSL_EOVRFLW</code> when
they can sense that l and m are too big.

   <p>If you want to calculate a spherical harmonic, then <em>do not</em> use
these functions.  Instead use <code>gsl_sf_legendre_sphPlm</code> below,
which uses a similar recursion, but with the normalized functions.

<div class="defun">
&mdash; Function: double <b>gsl_sf_legendre_Plm</b> (<var>int l, int m, double x</var>)<var><a name="index-gsl_005fsf_005flegendre_005fPlm-719"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_Plm_e</b> (<var>int l, int m, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flegendre_005fPlm_005fe-720"></a></var><br>
<blockquote><p>These routines compute the associated Legendre polynomial
P_l^m(x) for <!-- {$m \ge 0$} -->
m &gt;= 0, <!-- {$l \ge m$} -->
l &gt;= m, <!-- {$|x| \le 1$} -->
|x| &lt;= 1. 
<!-- Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_sf_legendre_Plm_array</b> (<var>int lmax, int m, double x, double result_array</var>[])<var><a name="index-gsl_005fsf_005flegendre_005fPlm_005farray-721"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_Plm_deriv_array</b> (<var>int lmax, int m, double x, double result_array</var>[]<var>, double result_deriv_array</var>[])<var><a name="index-gsl_005fsf_005flegendre_005fPlm_005fderiv_005farray-722"></a></var><br>
<blockquote><p>These functions compute arrays of Legendre polynomials
P_l^m(x) and derivatives dP_l^m(x)/dx,
for <!-- {$m \ge 0$} -->
m &gt;= 0, <!-- {$l = |m|, \dots, lmax$} -->
l = |m|, ..., lmax, <!-- {$|x| \le 1$} -->
|x| &lt;= 1. 
<!-- Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_legendre_sphPlm</b> (<var>int l, int m, double x</var>)<var><a name="index-gsl_005fsf_005flegendre_005fsphPlm-723"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_sphPlm_e</b> (<var>int l, int m, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005flegendre_005fsphPlm_005fe-724"></a></var><br>
<blockquote><p>These routines compute the normalized associated Legendre polynomial
<!-- {$\sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x)$} -->
\sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x) suitable
for use in spherical harmonics.  The parameters must satisfy <!-- {$m \ge 0$} -->
m &gt;= 0, <!-- {$l \ge m$} -->
l &gt;= m, <!-- {$|x| \le 1$} -->
|x| &lt;= 1. Theses routines avoid the overflows
that occur for the standard normalization of P_l^m(x). 
<!-- Exceptional Return Values: GSL_EDOM -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_sf_legendre_sphPlm_array</b> (<var>int lmax, int m, double x, double result_array</var>[])<var><a name="index-gsl_005fsf_005flegendre_005fsphPlm_005farray-725"></a></var><br>
&mdash; Function: int <b>gsl_sf_legendre_sphPlm_deriv_array</b> (<var>int lmax, int m, double x, double result_array</var>[]<var>, double result_deriv_array</var>[])<var><a name="index-gsl_005fsf_005flegendre_005fsphPlm_005fderiv_005farray-726"></a></var><br>
<blockquote><p>These functions compute arrays of normalized associated Legendre functions
<!-- {$\sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x)$} -->
\sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x),
and derivatives,
for <!-- {$m \ge 0$} -->
m &gt;= 0, <!-- {$l = |m|, \dots, lmax$} -->
l = |m|, ..., lmax, <!-- {$|x| \le 1$} -->
|x| &lt;= 1.0
<!-- Exceptional Return Values: GSL_EDOM -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_sf_legendre_array_size</b> (<var>const int lmax, const int m</var>)<var><a name="index-gsl_005fsf_005flegendre_005farray_005fsize-727"></a></var><br>
<blockquote><p>This function returns the size of <var>result_array</var>[] needed for the array
versions of P_l^m(x), <var>lmax</var> - <var>m</var> + 1.  An inline version of this function is used when <code>HAVE_INLINE</code> is defined. 
<!-- Exceptional Return Values: none -->
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>